Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T20:33:02.479Z Has data issue: false hasContentIssue false

Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys; Boride-layer growth kinetics

Published online by Cambridge University Press:  31 January 2011

C. M. Brakman
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
A. W. J. Gommers
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
E. J. Mittemeijer
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Get access

Abstract

Specimens of pure Fe and of Fe-0.8 mass % C, Fe-0.5 mass % Cr, Fe-4.0 mass % Cr, Fe-4.0 mass% Ni, and Fe-10.0 mass% Ni alloys were borided in boriding powder. A boron-compound layer developed consisting of a surface-adjacent “FeB” sublayer on top of an “Fe2B” sublayer. Layer-growth kinetics were analyzed by measuring the extent of penetration of the “FeB” and “Fe2B” sublayers as a function of boriding time and temperature in the range 1025–1275 K. Layer growth is dominated by B diffusion through “FeB/Fe2B”. This diffusion process is of strongly anisotropic nature. Consequently, ragged interfaces occur between the substrate and the boride layers. The depths of the tips of the most deeply penetrated “FeB” and “Fe2B” needles have been taken as measures for diffusion in the easy [001] diffusion directions. Assuming unidirectional B diffusion and parabolic growth, a simple model of layer growth has been given. It accounts for the specific volume difference between “FeB” and “Fe2B”. In contrast with earlier work, the model provides values for the kinetic parameters for growth of each of the phases in the boron-compound layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Matuschka, A. Graf von, Boronising (Carl Hanser Verlag, Munich, FRG, 1980).Google Scholar
2Dearnley, P. A. and Bell, T.Surf. Eng. 1, 203217 (1985).CrossRefGoogle Scholar
3Kunst, H. and Schaaber, O.Harterei-Tech. Mitt. 22, 125 (1967).Google Scholar
4Lu, M.J.Harterei-Tech. Mitt. 38, 156169 (1983).Google Scholar
5Kubaschewski, O.Iron-Binary Phase Diagrams (Springer Verlag, Berlin, FRG, 1982).Google Scholar
6Binary Phase Diagrams, edited by Massalski, T. B. et al. (ASM, Metals Park, OH, 1986), Vol. 1, p. 356.Google Scholar
7Bjurstrom, T. and Arnfelt, H.Z. Phys. Chem. (B) 4, 469474 (1929).CrossRefGoogle Scholar
8Hendricks, B. and Kosting, P. R.Z. Kristallog. 74, 511545 (1930).CrossRefGoogle Scholar
9Bjurstrom, T.Ark. Kemi, Mineralogi och Geologi 11A, no. 5, 112 (1933).Google Scholar
10Kiessling, R.Acta Chem. Scand. 4, 209227 (1950).CrossRefGoogle Scholar
11Pearson, W. B.Handbook of Lattice Spacings and Structures of Metals (Pergamon Press, Oxford, 1967), Vol. 1, p. 899.Google Scholar
12Pearson, W. B.Handbook of Lattice Spacings and Structures of Metals (Pergamon Press, Oxford, 1985), Vol. 2, p. 1297.Google Scholar
13Havinga, E. E.Damsma, H. and Hokkeling, P.J. Less-Common Metals 27, 169193 (1972).CrossRefGoogle Scholar
14Aronsson, B.Lundstrom, T. and Engstrom, I.Proc. Int. Symp. on Anisotropy in Single-Crystal Refractory Compounds, edited by Vahldiek, F. W. and Mersol, S.A. 1967 (Plenum Press, New York, 1968), Vol. 1, pp. 322.Google Scholar
15International Tables for X-ray Crystallography (The Kynoch Press, Birmingham, 1962), Vol. 3, p. 42.Google Scholar
16Chochatbwski, M.Przybylbwicz, K.Szymariski, J. and Zelechowski, J.Metalurgiai Odlewnictwo 9, 411421 (1983).Google Scholar
17Smit, J. J. M.Sc. Thesis Delft University of Technology, Laboratory of Metallurgy, 1984.Google Scholar
18Hagg, G.Z. Phys. Chem. (B) 11, 152162 (1930).Google Scholar
19Pauling, L.The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, New York, 1960), p. 435.Google Scholar
20Pearson, W. B.The Crystal Chemistry and Physics of Metals and Alloys (Wiley, New York, 1972), p. 135.Google Scholar
21Planitz, H.Treffer, G.Konig, H. and Marx, G.Neue Hiitte 27, 228230 (1982).Google Scholar
22Badini, C.Gianoglio, C. and Pradelli, G.J. Mater. Sci. 21, 17211729 (1986).CrossRefGoogle Scholar
23Jiang, Z.S.Zhang, L.X.Li, L.G.Pei, X.R. and Li, T.F.J. Heat Treating 2, 337343 (1982).CrossRefGoogle Scholar
24Fridberg, J.Torndahl, L.E. and Hillert, M.Jernkont. Ann. 153, 264276 (1969).Google Scholar
25Press, W. H.Flannery, B.P.Teukolsky, S.A. and Vetterling, W. T.Numerical Recipes (Cambridge University Press, Cambridge, 1986), pp. 269272.Google Scholar