Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T13:10:33.915Z Has data issue: false hasContentIssue false

Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process

Published online by Cambridge University Press:  31 January 2011

Zhibo Zhang
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
Jackie Y. Ying
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
Mildred S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ultrafine bismuth nanowire arrays were synthesized by injecting its liquid melt into nanochannels of a porous anodic alumina template. A large area (1 cm × 1.5 cm) of parallel wires with diameters as small as 13 nm, lengths of 30–50 μm, and packing density as high as 7.1 × 1010 cm−2 has been fabricated. X-ray diffraction patterns revealed these nanowires, embedded in the insulating matrix, to be essentially single crystalline and highly oriented. The optical absorption spectra of the nanowire arrays indicate that these bismuth nanowires undergo a semimetal-to-semiconductor transition due to two-dimensional quantum confinement effects.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

References

1.Keller, F., Hunter, M. S., and Robinson, D. L., J. Electrochem. Soc. 100, 411 (1953).CrossRefGoogle Scholar
2.Itaya, K., Sugarwara, S., Arai, K., and Saito, S., J. Chem. Engr. Jpn. 17, 514 (1984).CrossRefGoogle Scholar
3.Furneaux, R. C., Rigby, W. R., and Davidson, A. P., Nature (London) 337, 147 (1989).Google Scholar
4.Saito, M., Kirihara, M., Taniguchi, T., and Miyagi, M., Appl. Phys. Lett. 55, 607 (1989).CrossRefGoogle Scholar
5.Konno, M., Shindo, M., Sugawara, S., and Saito, S., J. Mem. Sci. 37, 193 (1988).CrossRefGoogle Scholar
6.Martin, C. R., Science 266, 1961 (1994).CrossRefGoogle Scholar
7.Routkevitch, D., Bigioni, T., Moskovits, M., and Xu, J. M., J. Phys. Chem. 100, 14037 (1996).CrossRefGoogle Scholar
8.Zhang, Z., Sun, X., Dresselhaus, M. S., Ying, J. Y., and Heremans, J. P., unpublished.Google Scholar
9.Gurvitch, M., J. Low Temp. Phys. 38, 777 (1980).CrossRefGoogle Scholar
10.Huber, C. A., Huber, T. E., Sadoqi, M., Lubin, J. A., Manalis, S., and Prater, C. B., Science 263, 800 (1994).CrossRefGoogle Scholar
11.Washburn, E. W., Phys. Rev. 17, 372 (1921).CrossRefGoogle Scholar
12.de Gennes, P. G., Rev. Mod. Phys. 57, 827 (1985).CrossRefGoogle Scholar
13.Thompson, G. E., Furneaux, R. C., Wood, G. C., Richardson, J. A., and Goode, J. S., Nature (London) 272, 433 (1978).Google Scholar
14.Mardilovich, P. P., Govyadinov, A. N., Mukhurov, N. I., Rzhevskii, A. M., and Paterson, R., J. Mem. Sci. 98, 131 (1995).CrossRefGoogle Scholar
15.O'Sullivan, J. P. and Wood, G. C., Proc. Roy. Soc. London A 317, 511 (1970).Google Scholar
16.Aspnes, D. E., Thin Solid Films 89, 249 (1982).CrossRefGoogle Scholar
17.Foss, C. A. Jr., Hornyak, G. L., Stockert, J. A., and Martin, C. R., J. Phys. Chem. 96, 7497 (1992).CrossRefGoogle Scholar