Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T01:52:47.934Z Has data issue: false hasContentIssue false

Biomimetic synthesis of superparamagnetic iron oxide particles in proteins

Published online by Cambridge University Press:  31 January 2011

Arvind Sinha
Affiliation:
National Metallurgical Laboratory, Jamshedpur 831007, India
Suprabha Nayar
Affiliation:
National Metallurgical Laboratory, Jamshedpur 831007, India
G. V. S. Murthy
Affiliation:
National Metallurgical Laboratory, Jamshedpur 831007, India
P. A. Joy
Affiliation:
National Chemical Laboratory, Pune 411008, India
V. Rao
Affiliation:
National Metallurgical Laboratory, Jamshedpur 831007, India
P. Ramachandrarao
Affiliation:
Banaras Hindu University, Varanasi 221005, India
Get access

Abstract

Matrix-mediated in situ synthesis of monodispersed magnetite and maghemite nanoparticles (2–16 nm) was carried out using the cavities present in gels of globular proteins such as egg white and bovine serum albumin. Under stringent conditions, spatial-charge-distribution-assisted molecular recognition of proteins for inorganic ions led to the site- and polymorph-specific synthesis of superparamagnetic iron oxide particles. A transformation from magnetite to maghemite as a nucleating phase could be observed by partially denaturing the egg white protein, signifying the delicate role of quaternary structure of proteins under different reaction conditions, in determining the size and shape of the polymorph.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mann, S., Nature 365, 499 (1993).CrossRefGoogle Scholar
2.Kaiser, R. and Miskolczy, G., J. Appl. Phys. 44, 1064 (1970).CrossRefGoogle Scholar
3.Bee, A., Massart, R., and Neveu, S., J. Magn. Magn. Mater. 149, 6 (1995).CrossRefGoogle Scholar
4.Chatterjee, J., Haik, Y., and Chen, C.J., J. Magn. Magn. Mater. 246, 382 (2002).CrossRefGoogle Scholar
5.Chatterjee, J., Haik, Y., and Chen, C.J., J. Magn. Magn. Mater. 225, 21 (2001).CrossRefGoogle Scholar
6.Montagne, F., Monval, O.M., Pichot, C., Mozzanega, H., and Elaissari, A., J. Magn. Magn. Mater. 250, 302 (2002).CrossRefGoogle Scholar
7.Garcia, J.L., Lazaro, F.J., Martinez, C., and Korma, A., J. Magn. Magn. Mater. 157/158, 272 (1996).CrossRefGoogle Scholar
8.Remsen, L.G., McCormick, C.I., Roman-Goldstein, S., Am. J. Neuroradiol. 17, 411 (1996).Google Scholar
9.Addadi, L. and Weiner, S., Angew. Chem., Int. Ed. Engl. 31, 153 (1992).CrossRefGoogle Scholar
10.Ozin, G.A., Adv. Mater. 4, 612 (1992).CrossRefGoogle Scholar
11.Calvert, P., Scr. Met. 31, 977 (1994).CrossRefGoogle Scholar
12.Sinha, A., Das, S.K., Rao, V., and Ramachandrarao, P., Scr. Met. 44, 1933 (2001).CrossRefGoogle Scholar
13.Nayar, S., Sinha, A., Das, S., Das, S.K., and Ramachandrarao, P., J. Mater. Sci. Lett. 20, 2099 (2001).CrossRefGoogle Scholar
14.Meldrum, F.C., Wade, V.J., Nimmo, D.L., Heywood, B.R., and Mann, S., Nature 349, 684 (1991).CrossRefGoogle Scholar
15.Mann, S., Biomimetic Materials Chemistry (VCH, Cambridge, U.K., 1996), p. 14.Google Scholar
16.Powder Diffraction File No. 19–629 (International Center for Diffraction Data, Newton Square, PA, 1967).Google Scholar
17.Powder Diffraction File No. 25–1402 (International Center for Diffraction Data, Newton, PA, 1961).Google Scholar
18.Lehlooh, A.F. and H-Mahmood, S., J. Magn. Magn. Mater. 151, 163 (1995).CrossRefGoogle Scholar
19.Gubin, S.P., Colloids Surf., A 202, 155 (2002).CrossRefGoogle Scholar
20.Avivi (Levi), S., Felner, I., Novik, I., and Gedanken, A., Biochim. Biophys. Acta 1527, 123 (2001).CrossRefGoogle Scholar