Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T11:12:56.723Z Has data issue: false hasContentIssue false

Bioinspired nanostructural peptide materials for supercapacitor electrodes

Published online by Cambridge University Press:  31 January 2011

G. Rosenman*
Affiliation:
Department of Physical Electronics, School of Electrical Engineering, The Iby & Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Self-assembly bioinspired peptide nanotubes (PNT) demonstrate diverse physical properties such as optical, piezoelectric, fluidic, etc. In this work, we present our research on environmentally clean bioinspired peptide nanostructured material, to be applied to energy storage devices-supercapacitors (SC). Such an application is based on our recently developed PNT physical vapor deposition technology. It has been found that PNT fine structure and its wettability in electrolytes are the critical factors for a strong variation of the SC capacitance. We show that PNT-coated carbon electrodes enlarge the double-layer capacitance by dozens of times; reaching 800 μF/cm2 in a sulfuric acid (normalizing to the electrode geometric surface area of carbon background electrode). The discovered effect is provided by hollow PNT possessing numerous hydrophilic nanoscale-diameter channels, elongated along the PNT axis, which dramatically increase the functional area of carbon electrodes. Another type of the observed PNT morphology is fiberlike highly hydrophobic PNT rods, which do not contribute to the SC capacitance.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Conway, B.E.Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Publishers, New York 1999)CrossRefGoogle Scholar
2.Burke, A.Ultracapacitors: Why, how, and where is the technology. J. Power Sources 91, 37 (2000)CrossRefGoogle Scholar
3.Pandolfo, A.G., Hollenkamp, A.F.Carbon properties and their role in supercapacitors. J. Power Sources 157, 11 (2006)CrossRefGoogle Scholar
4.Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., Van Schalkwijk, W.Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005)CrossRefGoogle ScholarPubMed
5.Manthiram, A., Murugan, A.V., Sarkar, A., Muraliganth, T.Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1, 621 (2008)CrossRefGoogle Scholar
6.Miao, F.J., Tao, B.R., Ci, P.L., Shi, J., Wang, L.W., Chu, P.K.3D ordered NiO/silicon MCP array electrode materials for electrochemical supercapacitors. Mater. Res. Bull. 44, 1920 (2009)CrossRefGoogle Scholar
7.Thomberg, T., Janes, A., Lust, E.Energy and power performance of vanadium carbide derived carbon electrode materials for supercapacitors. J. Electroanal. Chem. 630, 55 (2009)CrossRefGoogle Scholar
8.Simon, P., Gogotsi, Y.Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)CrossRefGoogle ScholarPubMed
9.Simon, P., Burke, A.Nanostructured carbons: Double-layer capacitance and more. Electrochem. Soc. Interface 17, 38 (2008)CrossRefGoogle Scholar
10.Frackowiak, E., Beguin, F.Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937 (2001)CrossRefGoogle Scholar
11.Fowkes, F.M., Harkins, W.D.The state of monolayers adsorbed at the interface solid−aqueous solution. J. Am. Chem. Soc. 62, 3377 (1940)CrossRefGoogle Scholar
12.Fang, B., Wey, Y.Z., Kumagai, M.Modified carbon materials for high-rate EDLCs applications. J. Power Sources 155, 487 (2006)CrossRefGoogle Scholar
13.Bleda-Martinez, M.J., Macia-Agullo, J.A., Lozano-Castello, D., Morallon, E., Cazorla-Amoros, D., Linares-Solano, A.Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon 43, 2677 (2005)CrossRefGoogle Scholar
14.Stein, A., Wang, Z.Y., Fierke, M.A.Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 21, 265 (2009)CrossRefGoogle Scholar
15.Hu, C.C., Su, J.H., Wen, T.C.Modification of multi-walled carbon nanotubes for electric double-layer capacitors: Tube opening and surface functionalization. J. Phys. Chem. Solids 68, 2353 (2007)CrossRefGoogle Scholar
16.Fusalba, F., Gouerec, P., Villers, D., Belanger, D.Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J. Electrochem. Soc. 148, A1 (2001)CrossRefGoogle Scholar
17.Ko, J.M., Ryu, K.S., Kim, S., Kim, K.M.Supercapacitive properties of composite electrodes consisting of polyaniline, carbon nanotube, and RuO2. J. Appl. Electrochem. 39, 1331 (2009)CrossRefGoogle Scholar
18.Song, R.Y., Park, J.H., Sivakkumar, S.R., Kim, S.H., Ko, J.M., Park, D.Y., Jo, S.M., Kim, D.Y.Supercapacitive properties of polyaniline/Nafion/hydrous RuO2 composite electrodes. J. Power Sources 166, 297 (2007)CrossRefGoogle Scholar
19.Adler-Abramovich, L., Aronov, D., Beker, P., Yevnin, M., Stempler, S., Buzhansky, L., Rosenman, G., Gazit, E.Vapor-deposited self-assembled peptide nano-array for energy storage and microfluidics devices. Nat. Nanotechnol. 4, 849 (2009)CrossRefGoogle Scholar
20.Hellmich, C., Katti, D.Mechanics of biological and bioinspired materials and structures. J. Engineering Mechanics (ASCE) 135, 365 (2009)CrossRefGoogle Scholar
21.Mohammed, J.S., Murphy, W.L.Bioinspired design of dynamic materials. Adv. Mater. 21, 2361 (2009)CrossRefGoogle Scholar
22.Zhang, S.G., Altman, M.Peptide self-assembly in functional polymer science and engineering. React. Funct. Polym. 41, 91 (1999)CrossRefGoogle Scholar
23.Ghadiri, M.R., Granja, J.R., Milligan, R.A., McRee, D.E., Khazanovich, N.Self-assembling organic nanotubes based on a cyclic peptide architecture. (Vol 366, Pg 324, 1993). Nature 372, 709 (1994)CrossRefGoogle Scholar
24.Reches, M., Gazit, E.Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625 (2003)CrossRefGoogle ScholarPubMed
25.Reches, M., Gazit, E.Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett. 4, 581 (2004)CrossRefGoogle Scholar
26.Amdursky, N., Beker, P., Schklovsky, J., Gazit, E., Rosenman, G.Ferroelectric and related phenomena in biological and bioinspired nanostructures. Ferroelectrics 399, 107 (2010)CrossRefGoogle Scholar
27.Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E., Rosenman, G.Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano. 4, 610 (2010)CrossRefGoogle ScholarPubMed
28.Yemini, M., Reches, M., Rishpon, J., Gazit, E.Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 5, 183 (2005)CrossRefGoogle ScholarPubMed
29.Yemini, M., Reches, M., Gazit, E., Rishpon, J.Peptide nanotube-modified electrodes for enzyme-biosensor applications. Anal. Chem. 77, 5155 (2005)CrossRefGoogle ScholarPubMed
30.Amdursky, N., Molotskii, M., Aronov, D., Adler-Abramovich, L., Gazit, E., Rosenman, G.Blue luminescence based on quantum confinement at peptide nanotubes. Nano Lett. 9, 3111 (2009)CrossRefGoogle ScholarPubMed
31.Amdursky, N., Gazit, E., Rosenman, G.Quantum confinement in self-assembled bioinspired peptide hydrogels. Adv. Mater. 22, 2311 (2010)CrossRefGoogle ScholarPubMed
32.Reches, M., Gazit, E.Controlled patterning of aligned self-assembled peptide nanotubes. Nat. Nanotechnol. 1, 195 (2006)CrossRefGoogle ScholarPubMed
33.Gazit, E., Adler-Abramovich, L., Aronov, D., Rosenman, G.Method of biomolecules vapor deposition and self assembled bionanostructrues and patterning of the same T.A. University 2007 U.S. Provisional Patent.Google Scholar
34.Gorbitz, C.H.The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's beta-amyloid polypeptide. Chem. Commun. (Camb.) 2332 (2006)CrossRefGoogle ScholarPubMed
35.Gorbitz, C.H.Nanotube formation by hydrophobic dipeptides. Chemistry 7, 5153 (2001)3.0.CO;2-N>CrossRefGoogle ScholarPubMed
36.Gorbitz, C.H.Microporous organic materials from hydrophobic dipeptides. Chemistry 13, 1022 (2007)CrossRefGoogle ScholarPubMed
37.Joshi, K.B., Verma, S.Participation of aromatic side chains in diketopiperazine ensembles. Tetrahedron Lett. 49, 4231 (2008)CrossRefGoogle Scholar
38.Frackowiak, E., Lota, G., Pernak, J.Room-temperature phosphonium ionic liquids for supercapacitor application. App. Phys. Lett. 86, 30517 (2005)CrossRefGoogle Scholar
39.Ko, T.H., Hung, K.H., Tzeng, S.S., Shen, J.W., Hung, C.H.Carbon nanofibers grown on activated carbon fiber fabrics as electrode of supercapacitors. Phys. Scr. T 129, 80 (2007)CrossRefGoogle Scholar
40.Kotz, R., Carlen, M.Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483 (2000)CrossRefGoogle Scholar
41.Ruiz, V., Blanco, C., Santamaria, R., Ramos-Fernandez, J.M., Martinez-Escandell, M., Sepulveda-Escribano, A., Rodriguez-Reinoso, F.An activated carbon monolith as an electrode material for supercapacitors. Carbon 47, 195 (2009)CrossRefGoogle Scholar
42.Bleda-Martinez, M.J., Lozano-Castello, D., Morallon, E., Cazorla-Amoros, D., Linares-Solano, A.Chemical and electrochemical characterization of porous carbon materials. Carbon 44, 2642 (2006)CrossRefGoogle Scholar
43.Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., Taberna, P.L.Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760 (2006)CrossRefGoogle Scholar
44.Mattia, D., Rossi, M.P., Kim, B.M., Korneva, G., Bau, H.H., Gogotsi, Y.Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films. J. Phys. Chem. B 110, 9850 (2006)CrossRefGoogle ScholarPubMed