Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T02:38:04.576Z Has data issue: false hasContentIssue false

Biocompatibility of Te–As–Se glass fibers for cell-based bio-optic infrared sensors

Published online by Cambridge University Press:  03 March 2011

Allison A. Wilhelm
Affiliation:
Department of Material Science and Engineering, University of Arizona, Tucson, Arizona 85721
Pierre Lucas*
Affiliation:
Department of Material Science and Engineering, University of Arizona, Tucson, Arizona 85721
Diana L. DeRosa
Affiliation:
Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, Arizona 85721
Mark R. Riley
Affiliation:
Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, Arizona 85721
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The chemical stability and toxicity of Te–As–Se (TAS) infrared fibers are investigated. These fibers are used for biosensing applications that involve direct contact with live cultivated human cells. It is shown that TAS fibers exhibit a small oxidation layer after extended exposure to air. This layer is highly soluble in water and easily removed. However, the TAS glass itself is stable in water over several days. While oxidized fibers release arsenate ions, which result in toxic effects to the cells, fresh or washed fibers show no toxic effects. A good correlation is shown between surface etching and the disappearance of toxicity.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bureau, B., Zhang, X.H., Smectala, F., Adam, J.L., Troles, J., Ma, H.L., Boussard-Pledel, C., Lucas, J., Lucas, P., Coq, D. Le, Riley, M.R., and Simmons, J.H.: Recent advances in chacogenide glasses. J. Non-Cryst. Solids 345, 276 (2004).CrossRefGoogle Scholar
2Sanghera, J.S., Shaw, L.B., Busse, L.E., Nguyen, V.Q., Pureza, P.C., Cole, B.C., Harbison, B.B., Aggarwal, I.D., Mossadegh, R., Kung, F., Talley, D., Rossel, D., and Miklos, R.: Development and infrared applications of chalcogenide glass optical fibers. Fiber Int. Optics 19, 251 (2000).Google Scholar
3Lund, G. and Bonnet, H.: DARWIN: The infrared space interferometer. Comptes Rendus Acad. Sci. 2, 137 (2001).Google Scholar
4Sanghera, J.S., Shaw, L.B., Busse, L.E., Talley, D., and Aggarwal, I.D.: Infrared transmitting fiber optics for biomedical applications. Proceedings Photonics West, San Diego, CA, SPIE 3596, 178 (1999).Google Scholar
5Steiner, H., Jakusch, M., Kraft, M., Karlowatz, M., Baumann, T., Niessner, R., Konz, W., Brandenburg, A., Michel, K., Boussard-Pledel, C., Bureau, B., Lucas, J., Reichlin, Y., Katzir, A., Fleischmann, N., Staubmann, K., Allabashi, R., Bayona, J.M., and Mizaikoff, B.: In situ sensing of volatile organic compounds in groundwater: First field tests of a mid-infrared fiber-optic sensing system. Appl. Spectrosc. 57, 607 (2003).CrossRefGoogle ScholarPubMed
6Lucas, P., Riley, M.R., Boussard-Pledel, C., and Bureau, B.: Advances in chalcogenide fiber evanescent-wave biochemical sensing. Anal. Biochem. 351, 1 (2006).CrossRefGoogle ScholarPubMed
7Hocde, S., Loreal, O., Sire, O., Boussard-Pledel, C., Bureau, B., Turlin, B., Keirsse, J., Leroyer, P., and Lucas, J.: Metabolic imaging of tissues by infrared fiber-optic spectroscopy: An efficient tool for medical diagnosis. J. Biomed. Opt. 9, 404 (2004).CrossRefGoogle ScholarPubMed
8Michel, K., Bureau, B., Boussard-Pledel, C., Jouan, T., Adam, J.L., Staubmann, K., and Baumann, T.: Monitoring of pollutant in wastewater by infrared spectroscopy using chalcogenide glass optical fibers. Sens. Actuators, B 101, 252 (2004).CrossRefGoogle Scholar
9Sanghera, J.S., Aggarwal, I.D., Busse, L.E., Pureza, P.C., Nguyen, V.Q., Kung, F.H., Shaw, L.B., and Chenard, F.: Chalcogenide optical fibers target mid-IR applications. Laser Focus World 41, 83 (2005).Google Scholar
10Krska, R., Rosenber, E., Taga, K., Kellner, R., Messica, A., and Katzir, A.: Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water. Appl. Phys. Lett. 61, 1778 (1992).CrossRefGoogle Scholar
11Karlowatz, M., Kraft, M., and Mizaikoff, B.: Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field. Anal. Chem. 76, 2643 (2004).CrossRefGoogle ScholarPubMed
12Taga, K., Kellner, R., Kainz, U., and Sleytr, U.B.: In situ attenuated total reflectance ft-ir analysis of an enzyme-modified mid-infrared fiber surface using crystalline bacterial surface proteins. Anal. Chem. 66, 35 (1994).CrossRefGoogle Scholar
13Mizaikoff, B., Gobel, R., Krska, R., Taga, K., Kellner, R., Tacke, M., and Katzir, A.: Infrared fiber-optical chemical sensors with reactive surface coatings. Sens. Actuators, B 29, 58 (1995).CrossRefGoogle Scholar
14Yu, C.X., Ganjoo, A., Jain, H., Pantano, C.G., and Irudayaraj, J.: Mid-IR biosensor: Detection and fingerprinting of pathogens on gold island functionalized chalcogenide films. Anal. Chem. 78, 2500 (2006).CrossRefGoogle Scholar
15Lucas, P., Coq, D. Le, Juncker, C., Collier, J., Boesewetter, D.E., Boussard-Plédel, C., Bureau, B., and Riley, M.R.: Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy (FEWS). Appl. Spectrosc. 59, 1 (2005).CrossRefGoogle Scholar
16Lucas, P., Solis, M.A., Coq, D. Le, Juncker, C., Riley, M.R., Collier, J., Boeswetter, D.E., Boussard-Pledel, C., and Bureau, B.: Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells. Sens. Actuators, B 119, 355 (2006).CrossRefGoogle Scholar
17Riley, M.R., DeRosa, D.L., Blaine, J., Potter, B.G., Lucas, P., Coq, D. Le, Juncker, C., Boeswetter, D.E., Collier, J., Boussard-Pledel, C., and Bureau, B.: Biologically inspired sensing: Infrared spectroscopic analysis of cell responses to an inhalation health hazard. Biotechnol. Prog. 22, 24 (2006).CrossRefGoogle Scholar
18Riley, M.R., Fernandez, I.M., and Lucas, P.: Spectroscopic analysis of cell physiology and function, in Frontiers in Drug Design and Discovery 256, edited by Caldwell, G.W., Atta-ur-Rahman, , D’Andrea, M.R. and Choudhary, M.I. (Bentham Science Publishers Ltd., Pennington, NJ, 2006).Google Scholar
19Fang, Y., Ferrie, A.M., Fontaine, N.H., Mauro, J., and Balakrishnan, J.: Resonant waveguide grating biosensor for living cell sensing. Biophys. J. 91, 1925 (2006).CrossRefGoogle ScholarPubMed
20Stenger, D.A., Gross, G.W., Keefer, E.W., Shaffer, K.M., Andreadis, J.D., Ma, W., and Pancrazio, J.J.: Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol. 19, 304 (2001).CrossRefGoogle ScholarPubMed
21DeBusschere, B.D. and Kovacs, G.T.A.: Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosens. Bioelectron. 16, 543 (2001).CrossRefGoogle ScholarPubMed
22Yicong, W., Ping, W., Xuesong, Y., Gaoyan, Z., Huiqi, H., Weimin, Y., Xiaoxiang, Z., Jinghong, H., and Dafu, C.: Drug evaluations using a novel microphysiometer based on cell-based biosensors. Sens. Actuators, B 80, 215 (2001).CrossRefGoogle Scholar
23Gotshal, Y., Simhi, R., Sela, B-A., and Katzir, A.: Blood diagnostic using fiberoptic evanescent wave spectroscopy and neural networks analysis. Sens. Actuators, B 42, 157 (1997).CrossRefGoogle Scholar
24Eytan, O., Sela, B-A., and Katzir, A.: Fiber-optic evanescent-wave spectroscopy and neural network: Application to chemical blood analysis. Appl. Opt. 39, 3357 (2000).CrossRefGoogle ScholarPubMed
25Keirsse, J., Bousard-Pledel, C., Loreal, O., Sire, O., Bureau, B., Leroyer, P., Turlin, B., and Lucas, J.: IR optical fiber sensor for biomedical applications. Vib. Spectrosc. 32, 23 (2003).CrossRefGoogle Scholar
26Coq, D. Le, Michel, K., Keirsse, J., Boussard-Pledel, C., Fonteneau, G., Bureau, B., Quere, J-M. Le, Sire, O., and Lucas, J.: Infrared glass fibers for in-situ sensing, chemical and biochemical reactions. C. R. Chimie 5, 907 (2002).Google Scholar
27Beyersmann, D.: Effects of carcinogenic metals on gene expression. Toxicol. Lett. 127, 63 (2002).CrossRefGoogle ScholarPubMed
28Hocde, S., Boussard-Pledel, C., Fonteneau, G., and Lucas, J.: Chalcogens based glasses for IR fiber chemical sensors. Solid State Sci. 3, 279 (2001).CrossRefGoogle Scholar
29Shiryaev, V.S., Adam, J-L., Zhang, X.H., Pledel, C. Boussard, Lucas, J., and Churbanov, M.F.: Infrared fibers based on Te–As–Se system with low optical losses. J. Non-Cryst. Solids 336, 113 (2004).CrossRefGoogle Scholar
30Lecoq, D., Michel, K., Fonteneau, G., Hocde, S., Boussard-Pledel, C., and Lucas, J.: Infrared chalcogen glasses: Chemical polishing and fiber remote spectroscopy. Int. J. Inorg. Mater. 3, 233 (2001).CrossRefGoogle Scholar
31Okeson, C.D., Riley, M.R., and Riley-Saxton, E.: In-vitro alveolar cytotoxicity of soluble components of airborne particulate matter: Effects of serum on toxicity of transition metals. Toxicol. in Vitro 18, 673 (2004).CrossRefGoogle ScholarPubMed