Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T18:33:48.801Z Has data issue: false hasContentIssue false

Bilayers of transition metal dichalcogenides: Different stackings and heterostructures

Published online by Cambridge University Press:  16 October 2013

Humberto Terrones*
Affiliation:
Department of Physics and Center for 2-D and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802
Mauricio Terrones
Affiliation:
Department of Physics and Center for 2-D and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802; and Department of Chemistry, Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Besides graphene and hexagonal boron nitride, transition metal dichalcogenides (TMDs) also exhibit a layered structure in which the layers weakly interact via van der Waals forces. Semiconducting TMDs in bulk are indirect band gap materials. However, an isolated sheet exhibits a direct gap. This particular behavior makes them very attractive in terms of optical properties. Moreover, NbS2 and NbSe2 in bulk and their monolayers are metallic. Density functional theory calculations were carried out to study different TMD bilayer systems. First, different bilayer geometries with different stackings were considered. It was found that the indirect and direct band gaps compete; however, the indirect band gap always dominates. Surprisingly, bilayer heterostructures of different TMDs have been found to possess direct band gaps. Finally, heterobilayers composed of one metallic monolayer and a semiconducting layer are predicted as novel metallic van der Waals solids that might find applications in new two-dimensional nanodevices.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wilson, J.A. and Yoffe, A.D.: Transition metal dichalcogenides discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18(73), 193 (1969).CrossRefGoogle Scholar
Frindt, R.F.: Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928 (1966).Google Scholar
Frindt, R.F.: Optical absorption of a few unit-cell layers of MoS2 . Phys. Rev. 140(2A), 536 (1965).CrossRefGoogle Scholar
Joensen, P., Frindt, R.F., and Morrison, S.R.: Single-layer MoS2 . Mater. Res. Bull. 21(4), 457 (1986).Google Scholar
Fleischauer, P.D.: Fundamental-aspects of the electronic-structure, materials properties and lubrication performance of sputtered MoS2 Films. Thin Solid Films 154(1–2), 309 (1987).Google Scholar
Martin, J.M., Donnet, C., Lemogne, T., and Epicier, T.: Superlubricity of molybdenum-disulfide. Phys. Rev. B 48(14), 10583 (1993).CrossRefGoogle Scholar
Rapoport, L., Fleischer, N., and Tenne, R.: Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 15(18), 1782 (2005).Google Scholar
Tenne, R., Margulis, L., Genut, M., and Hodes, G.: Polyhedral and cylindrical structures of tungsten disulfide. Nature 360(6403), 444 (1992).Google Scholar
Margulis, L., Salitra, G., Tenne, R., and Talianker, M.: Nested fullerene-like structures. Nature 365(6442), 113 (1993).Google Scholar
Tenne, R., Margulis, L., and Hodes, G.: Fullerene-like nanocrystals of tungsten disulfide. Adv. Mater. 5(5), 386 (1993).Google Scholar
Mattheis, L.: Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8(8), 3719 (1973).CrossRefGoogle Scholar
Wypych, F. and Schollhorn, R.: 1T-MOS2, a new metallic modification of molybdenum-disulfide. J. Chem. Soc. Chem. Commun. (19), 1386 (1992).CrossRefGoogle Scholar
Yang, D., Sandoval, S.J., Divigalpitiya, W.M.R., Irwin, J.C., and Frindt, R.F.: Structure of single-molecular-layer MOS2 . Phys. Rev. B 43(14), 12053 (1991).Google Scholar
Bissessur, R., Kanatzidis, M.G., Schindler, J.L., and Kannewurf, C.R.: Encapsulation of polymers into MOS2 and metal to insulator transition in metastable MOS2 . J. Chem. Soc. Chem. Commun. (20), 1582 (1993).CrossRefGoogle Scholar
Petkov, V., Billinge, S.J.L., Heising, J., and Kanatzidis, M.G.: Application of atomic pair distribution function analysis to materials with intrinsic disorder. Three-dimensional structure of exfoliated-restacked WS2: Not just a random turbostratic assembly of layers. J. Am. Chem. Soc. 122(47), 11571 (2000).Google Scholar
Rahn, D.J., Hellmann, S., Kallane, M., Sohrt, C., Kim, T.K., Kipp, L., and Rossnagel, K.: Gaps and kinks in the electronic structure of the superconductor 2H-NbSe2 from angle-resolved photoemission at 1 K. Phys. Rev. B 85(22), 224532 (2012).Google Scholar
Wieting, T.K. and , M. Schluter, : Electrons and Phonons in Layered Crystal Structures (D. Reidel, Dordrecht, Netherlands, 1979).CrossRefGoogle Scholar
Seifert, G., Terrones, H., Terrones, M., and Frauenheim, T.: Novel NbS2 metallic nanotubes. Solid State Commun. 115(12), 635 (2000).CrossRefGoogle Scholar
Moncton, D.E., Axe, J.D., and Disalvo, F.J.: Neutron-scattering study of charge-density wave transitions in 2H-TaSe2 and 2H-NbSe2 . Phys. Rev. B 16(2), 801 (1977).Google Scholar
Malliakas, C.D. and Kanatzidis, M.G.: Nb-Nb interactions define the charge density wave structure of 2H-NbSe2 . J. Am. Chem. Soc. 135(5), 1719 (2013).Google Scholar
Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F.: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010).Google Scholar
Zeng, H.L., Dai, J.F., Yao, W., Xiao, D., and Cui, X.D.: Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7(8), 490 (2012).Google Scholar
Mak, K.F., He, K.L., Shan, J., and Heinz, T.F.: Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7(8), 494 (2012).Google Scholar
Wang, H., Yu, L.L., Lee, Y.H., Shi, Y.M., Hsu, A., Chin, M.L., Li, L.J., Dubey, M., Kong, J., and Palacios, T.: Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674 (2012).Google Scholar
Hwang, W.S., Remskar, M., Yan, R.S., Protasenko, V., Tahy, K., Chae, S.D., Zhao, P., Konar, A., Xing, H.L., Seabaugh, A., and Jena, D.: Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 101(1), 013107 (2012).Google Scholar
Zhang, Y.J., Ye, J.T., Matsuhashi, Y., and Iwasa, Y.: Ambipolar MoS2 thin flake transistors. Nano Lett. 12(3), 1136 (2012).Google Scholar
Fang, H., Chuang, S., Chang, T.C., Takei, K., Takahashi, T., and Javey, A.: High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12(7), 3788 (2012).Google Scholar
Wang, Q.A., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).Google Scholar
Perea-López, N., Elías, A.L., Berkdemir, A., Castro-Beltran, A., Gutiérrez, H.R., Feng, S., Lv, R., Hayashi, T., López-Urías, F., Ghosh, S., Muchharla, B., Talapatra, S., Terrones, H., and Terrones, M.: Photosensor device based on few-layered WS2 Films. Adv. Funct. Mater. (2013) DOI: 10.1002/adfm.201300760.Google Scholar
Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., and Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263 (2013).CrossRefGoogle ScholarPubMed
Bromley, R.A., Yoffe, A.D., and Murray, R.B.: Band structures of some transition-metal dichalcogenides. III. Group VIA-trigonal prism materials. J. Phys. C: Solid State Phys. 5(7), 759 (1972).Google Scholar
Lebegue, S. and Eriksson, O.: Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79(11), 115409 (2009).Google Scholar
Boker, T., Severin, R., Muller, A., Janowitz, C., Manzke, R., Voss, D., Kruger, P., Mazur, A., and Pollmann, J.: Band structure of MoS2, MoSe2, and alpha-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64(23), 235305 (2001).Google Scholar
Jiang, H.: Electronic band structures of molybdenum and tungsten dichalcogenides by the GW approach. J. Phys. Chem. C 116(14), 7664 (2012).Google Scholar
Cheiwchanchamnangij, T. and Lambrecht, W.R.L.: Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85(20), 205302 (2012).Google Scholar
Enyashin, A., Gemming, S., and Seifert, G.: Nanosized allotropes of molybdenum disulfide. Eur. Phys. J. Spec. Top. 149, 103 (2007).CrossRefGoogle Scholar
Terrones, H., Lopez-Urias, F., and Terrones, M.: Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, (2013).Google Scholar
Wildervanck, J.C. and Jellinek, F.: Preparation and crystallinity of molybdenum and tungsten sulfides. Z. Anorg. Allg. Chem. 328(5–6), 309 (1964).Google Scholar
Bonneau, P.R., Jarvis, R.F., and Kaner, R.B.: Rapid solid-state synthesis of materials from molybdenum-disulfide to refractories. Nature 349(6309), 510 (1991).Google Scholar
James, P.B. and Lavik, M.T.: Crystal structure of MoSe2 . Acta Crystall. 16(11), 1183 (1963).Google Scholar
Elías, A.L., Perea-López, N., Castro-Beltrán, A., Berkdemir, A., Lv, R., Feng, S., Long, A.D., Hayashi, T., Kim, Y.A., Endo, M., Gutiérrez, H.R., Pradhan, N.R., Balicas, L., Mallouk, T.E., López-Urías, F., Terrones, H., and Terrones, M.: Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 7(6), 5235 (2013).Google Scholar
Georgiou, T., Jalil, R., Belle, B.D., Britnell, L., Gorbachev, R.V., Morozov, S.V., Kim, Y.J., Gholinia, A., Haigh, S.J., Makarovsky, O., Eaves, L., Ponomarenko, L.A., Geim, A.K., Novoselov, K.S., and Mishchenko, A.: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100 (2013).Google Scholar
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220(5–6), 567 (2005).Google Scholar
Ceperley, D.M. and Alder, B.J.: Ground-state of the electron-gas by a stochastic method. Phys. Rev. Lett. 45(7), 566 (1980).CrossRefGoogle Scholar
Perdew, J.P. and Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048 (1981).Google Scholar
Ortmann, F., Bechstedt, F., and Schmidt, W.G.: Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006).CrossRefGoogle Scholar
Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for the exchange and correlation. Phys. Rev. B 46(11), 6671 (1992).Google Scholar
Ding, Y., Wang, Y., Ni, J., Shi, L., Shi, S., and Tang, W.: First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B 406(11), 2254 (2011).Google Scholar
Mahatha, S.K., Patel, K.D., and Menon, K.S.R.: Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies. J. Phys. Condens. Matter 24(47), 475504 (2012).Google Scholar
Refson, K., Tulip, P.R., and Clark, S.J.: Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys. Rev. B 73(15), 155114 (2006).Google Scholar