Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T18:49:59.490Z Has data issue: false hasContentIssue false

Bilayer graphene-covered Cu flexible electrode with excellent mechanical reliability and electrical performance

Published online by Cambridge University Press:  11 October 2019

Yu-Jia Yang
Affiliation:
Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, People’s Republic of China
Bin Zhang*
Affiliation:
Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, People’s Republic of China
Hong-Yuan Wan
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
Kun Liu
Affiliation:
School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
Guang-Ping Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Flexible electrode is an indispensable component of emerging portable, flexible, and wearable electronic devices. Although various flexible electrodes with different dimensions and functions have been explored, developing a new electrode material with excellent mechanical reliability and superior electrical performance remains a challenge. Here, a graphene-covered Cu composite electrode film with a total thickness of 100 nm is successfully fabricated onto a flexible polyimide substrate by means of a series of assembly methods including physical vapor deposition, chemical vapor deposition, and transfer technique. The composite electrode film on the flexible substrate exhibits evidently enhanced tensile strength, monotonic bending, and repeatedly bending fatigue reliability as well as electrical performance compared with that of the bared Cu film electrode. Such excellent mechanical performances are attributed to the role of the graphene coating in suppressing fatigue damage formation and preventing crack advance. It is expected that the chemical vapor-deposited graphene-covered Cu composite electrode would extend the potential ultrathin metal film electrode as the innovative electrode material for the next-generation flexible electronic devices.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jia, D., Jiang, D., Zheng, Y., Tan, H., Cao, X., Liu, F., Yue, L., Sun, Y., and Liu, J.: Electrochemical synthesis of NiCo layered double hydroxide nanosheets decorated on moderately oxidized graphene films for energy storage. Nanoscale 11, 2812 (2019).CrossRefGoogle ScholarPubMed
Yu, Y., Luo, Y., Wu, H., Jiang, K., Li, Q., Fan, S., Li, J., and Wang, J.: Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale 10, 19972 (2018).CrossRefGoogle ScholarPubMed
Zhu, L., Zheng, D., Wang, Z., Zheng, X., Fang, P., Zhu, J., Yu, M., Tong, Y., and Lu, X.: A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 30, 1805268 (2018).CrossRefGoogle ScholarPubMed
Yao, Y., Chen, M., Xu, R., Zeng, S., Yang, H., Ye, S., Liu, F., Wu, X., and Yu, Y.: CNT interwoven nitrogen and oxygen dual-doped porous carbon nanosheets as free-standing electrodes for high-performance Na–Se and K–Se flexible batteries. Adv. Mater. 30, 1805234 (2018).CrossRefGoogle ScholarPubMed
Liang, F-C., Chang, Y-W., Kuo, C-C., Cho, C-J., Jiang, D-H., Jhuang, F-C., Rwei, S-P., and Borsali, R.: A mechanically robust silver nanowire–polydimethylsiloxane electrode based on facile transfer printing techniques for wearable displays. Nanoscale 11, 1520 (2019).CrossRefGoogle ScholarPubMed
Song, J., Fang, T., Li, J., Xu, L., Zhang, F., Han, B., Shan, Q., and Zeng, H.: Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 30, 1805409 (2018).CrossRefGoogle ScholarPubMed
Park, I.J., Kim, T.I., Kang, S., Shim, G.W., Woo, Y., Kim, T.S., and Choi, S.Y.: Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale 10, 16069 (2018).CrossRefGoogle ScholarPubMed
Jo, H.S., Kwon, H-J., Kim, T-G., Park, C-W., An, S., Yarin, A.L., and Yoon, S.S.: Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires. Nanoscale 10, 19825 (2018).CrossRefGoogle ScholarPubMed
Yetisen, A.K., Martinez-Hurtado, J.L., Ünal, B., Khademhosseini, A., and Butt, H.: Wearables in medicine. Adv. Mater. 30, 1706910 (2018).CrossRefGoogle Scholar
Huynh, T.P. and Haick, H.: Autonomous flexible sensors for health monitoring. Adv. Mater. 30, 1802337 (2018).CrossRefGoogle ScholarPubMed
Pu, Z., Tu, J., Han, R., Zhang, X., Wu, J., Fang, C., Wu, H., Zhang, X., Yu, H., and Li, D.: A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring. Lab Chip 18, 3570 (2018).CrossRefGoogle ScholarPubMed
Hwang, B., Kim, W., Kim, J., Lee, S., Lim, S., Kim, S., Oh, S.H., Ryu, S., and Han, S.M.: Role of graphene in reducing fatigue damage in Cu/Gr nanolayered composite. Nano Lett. 17, 4740 (2017).CrossRefGoogle ScholarPubMed
Park, S., Vosguerichian, M., and Bao, Z.: A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727 (2013).CrossRefGoogle ScholarPubMed
Liu, L., Ding, L., Zhong, D., Han, J., Wang, S., Meng, Q., Qiu, C., Zhang, X., Peng, L-M., and Zhang, Z.: Carbon nanotube complementary gigahertz integrated circuits and their applications on wireless sensor interface systems. ACS Nano 13, 2526 (2019).Google ScholarPubMed
Zhang, H., Xiang, L., Yang, Y., Xiao, M., Han, J., Ding, L., Zhang, Z., Hu, Y., and Peng, L-M.: High-performance carbon nanotube complementary electronics and integrated sensor systems on ultrathin plastic foil. ACS Nano 12, 2773 (2018).CrossRefGoogle ScholarPubMed
Li, C., Ding, M., Zhang, B., Qiao, X., and Liu, C.Y.: Graphene aerogels that withstand extreme compressive stress and strain. Nanoscale 10, 18291 (2018).CrossRefGoogle ScholarPubMed
Chong, W.G., Xiao, Y., Huang, J-Q., Yao, S., Cui, J., Qin, L., Gao, C., and Kim, J-K.: Highly conductive porous graphene/sulfur composite ribbon electrodes for flexible lithium–sulfur batteries. Nanoscale 10, 21132 (2018).CrossRefGoogle ScholarPubMed
Deng, Z., Jiang, H., Hu, Y., Liu, Y., Zhang, L., Liu, H., and Li, C.: 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv. Mater. 29, 1603020 (2017).CrossRefGoogle Scholar
Guan, C., Sumboja, A., Wu, H., Ren, W., Liu, X., Zhang, H., Liu, Z., Cheng, C., Pennycook, S.J., and Wang, J.: Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 29, 1704117 (2017).CrossRefGoogle ScholarPubMed
Liu, B., Zhang, J., Wang, X., Chen, G., Chen, D., Zhou, C., and Shen, G.: Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12, 3005 (2012).CrossRefGoogle Scholar
Zhang, Y., Zhang, L., Cui, K., Ge, S., Cheng, X., Yan, M., Yu, J., and Liu, H.: Flexible electronics based on micro/nanostructured paper. Adv. Mater. 30, 1801588 (2018).CrossRefGoogle ScholarPubMed
Yang, Y., Huang, Q., Payne, G.F., Sun, R., and Wang, X.: A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 11, 725 (2019).CrossRefGoogle ScholarPubMed
Yu, P., Fu, W., Zeng, Q., Lin, J., Yan, C., Lai, Z., Tang, B., Suenaga, K., Zhang, H., and Liu, Z.: Controllable synthesis of atomically thin type-II weyl semimetal WTe2 nanosheets: An advanced electrode material for all-solid-state flexible supercapacitors. Adv. Mater. 29, 1701909 (2017).CrossRefGoogle ScholarPubMed
Luo, X.M., Zhu, X.F., and Zhang, G.P.: Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat. Commun. 5, 3021 (2014).CrossRefGoogle ScholarPubMed
Wan, H.Y., Luo, X.M., Li, X., Liu, W., and Zhang, G.P.: Nanotwin-enhanced fatigue resistance of ultrathin Ag films for flexible electronics applications. Mater. Sci. Eng. A 676, 421 (2016).CrossRefGoogle Scholar
Zhang, B., Xiao, T.Y., Luo, X.M., Zhu, X.F., and Zhang, G.P.: Enhancing fatigue cracking resistance of nanocrystalline Cu films on a flexible substrate. Mater. Sci. Eng. A 627, 61 (2015).CrossRefGoogle Scholar
Yun, J.: Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv. Funct. Mater. 27, 1606641 (2017).CrossRefGoogle Scholar
Wimalananda, M.D.S.L., Kim, J-K., and Lee, J-M.: Toward the ultra-transparent electrode by using patterned silver nanowire and graphene layered material. Carbon 125, 9 (2017).CrossRefGoogle Scholar
Tseng, C-A., Chen, C-C., Ulaganathan, R.K., Lee, C-P., Chiang, H-C., Chang, C-F., and Chen, Y-T.: One-step synthesis of antioxidative graphene-wrapped copper nanoparticles on flexible substrates for electronic and electrocatalytic applications. ACS Appl. Mater. Interfaces 9, 25067 (2017).CrossRefGoogle ScholarPubMed
Hwang, C., Song, W-J., Han, J-G., Bae, S., Song, G., Choi, N-S., Park, S., and Song, H-K.: Foldable electrode architectures based on silver-nanowire-wound or carbon-nanotube-webbed micrometer-scale fibers of polyethylene terephthalate mats for flexible lithium-ion batteries. Adv. Mater. 30, 1705445 (2018).CrossRefGoogle ScholarPubMed
Wang, H-G., Li, W., Liu, D-P., Feng, X-L., Wang, J., Yang, X-Y., Zhang, X-b., Zhu, Y., and Zhang, Y.: Flexible electrodes for sodium-ion batteries: Recent progress and perspectives. Adv. Mater. 29, 1703012 (2017).CrossRefGoogle Scholar
Kumar, A. and Zhou, C.: The race to replace tin-doped indium oxide: Which material will win? ACS Nano 4, 11 (2010).CrossRefGoogle ScholarPubMed
Wang, J-L., Hassan, M., Liu, J-W., and Yu, S-H.: Nanowire assemblies for flexible electronic devices: Recent advances and perspectives. Adv. Mater. 30, 1803430 (2018).CrossRefGoogle Scholar
Zhang, G.P., Sun, K.H., Zhang, B., Gong, J., Sun, C., and Wang, Z.G.: Tensile and fatigue strength of ultrathin copper films. Mater. Sci. Eng. A 483–484, 387 (2008).CrossRefGoogle Scholar
Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., and Kraft, O.: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).CrossRefGoogle Scholar
Liu, H.S., Zhang, B., and Zhang, G.P.: Delaying premature local necking of high-strength Cu: A potential way to enhance plasticity. Scr. Mater. 64, 13 (2011).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).CrossRefGoogle ScholarPubMed
Kim, Y., Lee, J., Yeom, M.S., Shin, J.W., Kim, H., Cui, Y., Kysar, J.W., Hone, J., Jung, Y., Jeon, S., and Han, S.M.: Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat. Commun. 4, 2114 (2013).CrossRefGoogle ScholarPubMed
Song, S.H., Park, K.H., Kim, B.H., Choi, Y.W., Jun, G.H., Lee, D.J., Kong, B.S., Paik, K.W., and Jeon, S.: Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25, 732 (2013).CrossRefGoogle ScholarPubMed
Kim, S.J., Shin, D.H., Choi, Y.S., Rho, H., Park, M., Moon, B.J., Kim, Y., Lee, S.K., Lee, D.S., Kim, T.W., Lee, S.H., Kim, K.S., Hong, B.H., and Bae, S.: Ultrastrong graphene–copper core–shell wires for high-performance electrical cables. ACS Nano 12, 2803 (2018).CrossRefGoogle ScholarPubMed
Cao, M., Xiong, D-B., Tan, Z., Ji, G., Amin-Ahmadi, B., Guo, Q., Fan, G., Guo, C., Li, Z., and Zhang, D.: Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in situ processing for enhanced mechanical properties and high electrical conductivity. Carbon 117, 65 (2017).CrossRefGoogle Scholar
Hwang, J., Yoon, T., Jin, S.H., Lee, J., Kim, T.S., Hong, S.H., and Jeon, S.: Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 25, 6724 (2013).CrossRefGoogle ScholarPubMed
Yang, Z., Wang, L., Shi, Z., Wang, M., Cui, Y., Wei, B., Xu, S., Zhu, Y., and Fei, W.: Preparation mechanism of hierarchical layered structure of graphene/copper composite with ultrahigh tensile strength. Carbon 127, 329 (2018).CrossRefGoogle Scholar
Jiang, R., Zhou, X., and Liu, Z.: Electroless Ni-plated graphene for tensile strength enhancement of copper. Mater. Sci. Eng. A 679, 323 (2017).CrossRefGoogle Scholar
Chen, F., Ying, J., Wang, Y., Du, S., Liu, Z., and Huang, Q.: Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96, 836 (2016).CrossRefGoogle Scholar
Tang, Y., Yang, X., Wang, R., and Li, M.: Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Mater. Sci. Eng. A 599, 247 (2014).CrossRefGoogle Scholar
Kim, W.J., Lee, T.J., and Han, S.H.: Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon 69, 55 (2014).CrossRefGoogle Scholar
Ren, Z., Meng, N., Shehzad, K., Xu, Y., Qu, S., Yu, B., and Luo, J.K.: Mechanical properties of nickel–graphene composites synthesized by electrochemical deposition. Nanotechnology 26, 065706 (2015).CrossRefGoogle ScholarPubMed
Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z., and Zhang, D.: Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 66, 594 (2012).CrossRefGoogle Scholar
Li, Z., Fan, G., Tan, Z., Guo, Q., Xiong, D., Su, Y., Li, Z., and Zhang, D.: Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology 25, 325601 (2014).CrossRefGoogle ScholarPubMed
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).CrossRefGoogle ScholarPubMed
Zhang, B., Lee, W.H., Piner, R., Kholmanov, I., Wu, Y., Li, H., Ji, H., and Ruoff, R.S.: Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 6, 2471 (2012).CrossRefGoogle ScholarPubMed
Li, X., Colombo, L., and Ruoff, R.S.: Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 28, 6247 (2016).CrossRefGoogle ScholarPubMed
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).CrossRefGoogle ScholarPubMed
Ni, Z.H., Wang, H.M., Kasim, J., Fan, H.M., Yu, T., Wu, Y.H., Feng, Y.P., and Shen, Z.X.: Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758 (2007).CrossRefGoogle ScholarPubMed
Chu, K., Wang, F., Li, Y-b., Wang, X-h., Huang, D-j., and Geng, Z-r.: Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene. Composites, Part A 109, 267 (2018).CrossRefGoogle Scholar
Nieto, A., Bisht, A., Lahiri, D., Zhang, C., and Agarwal, A.: Graphene reinforced metal and ceramic matrix composites: A review. Int. Mater. Rev. 62, 241 (2016).CrossRefGoogle Scholar
Xiong, D-B., Cao, M., Guo, Q., Tan, Z., Fan, G., Li, Z., and Zhang, D.: Graphene-and-copper artificial nacre fabricated by a preform impregnation process: Bioinspired strategy for strengthening-toughening of metal matrix composite. Acs Nano 9, 6934 (2015).CrossRefGoogle ScholarPubMed
Li, M., Che, H., Liu, X., Liang, S., and Xie, H.: Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles. J. Mater. Sci. 49, 3725 (2014).CrossRefGoogle Scholar
Zhu, X., Zhao, Y., Ma, L., Zhang, G., Ren, W., Peng, X., Hu, N., Rintoul, L., Bell, J.M., and Yan, C.: Graphene coating makes copper more resistant to plastic deformation. Compos. Commun. 12, 106 (2019).CrossRefGoogle Scholar
Zhao, Y., Peng, X., Fu, T., Zhu, X., Hu, N., and Yan, C.: Strengthening mechanisms of graphene coated copper under nanoindentation. Comput. Mater. Sci. 144, 42 (2018).CrossRefGoogle Scholar
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).CrossRefGoogle ScholarPubMed
Ni, J.L., Zhu, X.F., Pei, Z.L., Gong, J., Sun, C., and Zhang, G.P.: Comparative investigation of fracture behaviour of aluminium-doped ZnO films on a flexible substrate. J. Phys. D: Appl. Phys. 42, 175404 (2009).CrossRefGoogle Scholar
Zhu, X., Zhang, B., Gao, J., and Zhang, G.: Evaluation of the crack-initiation strain of a Cu–Ni multilayer on a flexible substrate. Scr. Mater. 60, 178 (2009).CrossRefGoogle Scholar
Zhang, C., Lu, C., Pei, L., Li, J., Wang, R., and Tieu, K.: The negative Poisson’s ratio and strengthening mechanism of nanolayered graphene/Cu composites. Carbon 143, 125 (2019).CrossRefGoogle Scholar
Wang, J., Zhang, X., Zhao, N., and He, C.: In situ synthesis of copper-modified graphene-reinforced aluminum nanocomposites with balanced strength and ductility. J. Mater. Sci. 54, 5498 (2018).CrossRefGoogle Scholar
Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A.A., and Ruoff, R.S.: Thermal conductivity of isotopically modified graphene. Nat. Mater. 11, 203 (2012).CrossRefGoogle ScholarPubMed
Yang, Y.J., Zhang, B., Tan, H.F., Luo, X.M., and Zhang, G.P.: Fatigue and fracture reliability of shell-mimetic PE/TiO2 nanolayered composites. Adv. Eng. Mater. 19, 1700246 (2017).CrossRefGoogle Scholar
Dai, C., Zhu, X., and Zhang, G.: Tensile and fatigue properties of free-standing Cu foils. J. Mater. Sci. Technol. 25, 721 (2009).Google Scholar
Yang, Y-J., Zhang, B., Wan, H-Y., and Zhang, G-P.: Optimizing fatigue performance of nacre-mimetic PE/TiO2 nanolayered composites by tailoring thickness ratio. J. Mater. Res. 33, 1543 (2018).CrossRefGoogle Scholar