Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T01:10:51.956Z Has data issue: false hasContentIssue false

Bi2Sr2CaCu2O8+x films prepared by fluorinated precursors in dry ambient

Published online by Cambridge University Press:  31 January 2011

L.S. Hung
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650
Get access

Abstract

Bi2Sr2CaCu2O8+x films were prepared by mixing 2-ethylhexanoate precursors with heptafluorobutyric acid and annealing at 820 °C in dry ambient. The films underwent substantial mass transport and exhibited abnormal grain growth, indicating that some liquid phases might be involved in the process. It was found that the high atomic mobilities during annealing significantly improved in-plane orientations and consequently increased critical current densities.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mantese, J.V., Hamdi, A.H., Micheli, A.L., Cheng, Y.L., Wong, C.A., Johnson, J.L., Karmarkar, M. M., and Padmanbhan, K. R., Appl. Phys. Lett. 52, 1631 (1988).CrossRefGoogle Scholar
2Mantese, J. V., Micheli, A. L., Hamdi, A. H., and Vest, R. W., Mater. Res. Bull. XIV, 48 (1989).CrossRefGoogle Scholar
3Hung, L.S., Lee, S.T., Braunstein, G. H., and Agostinelli, J.A., J. Appl. Phys. 66, 463 (1989).CrossRefGoogle Scholar
4Agostinelli, J. A., Paz-Pujalt, G. R., and Mehrotra, A. K., Physica C 156, 208 (1988).CrossRefGoogle Scholar
5Lelental, M., Chen, S., Lee, S T., Braunstein, G., and Blanton, T. N., Physica C 167, 614 (1990).CrossRefGoogle Scholar
6Hung, L. S. and Chatterjee, D. K., J. Mater. Res. 6, 459 (1991).CrossRefGoogle Scholar
7Lubberts, G., J. Appl. Phys. 68, 688 (1990).CrossRefGoogle Scholar
8Gupta, A., Jagannathan, R., Cooper, E. I., Giess, E. A., Landman, J. I., and Hussey, B. W., Appl. Phys. Lett. 52, 2077 (1988).CrossRefGoogle Scholar
9Gupta, A., Cooper, E.I., Jagannathan, R., and Giess, E.A., Chemistry of High-Temperature Superconductors II (American Chemical Society, Washington, DC, 1988), p. 265.CrossRefGoogle Scholar
10Mclntyre, P.C., Cima, M.J., and Ng, M.F., J. Appl. Phys. 68, 4183 (1990).CrossRefGoogle Scholar
11Hung, L.S., Lee, S.T., Mir, J.M., Shin, D.H., Li, J., Silcox, J., and Mayer, J. W., J. Appl. Phys. 71, 2356 (1992).CrossRefGoogle Scholar
12Stavola, M., Krol, D. V., Schneemeyer, L. F., Sunshine, S. A., Fleming, R. M., Waszczak, T.V., and Kosinski, S.G., Phys. Rev. B 38, 5110 (1988).CrossRefGoogle Scholar
13Cardona, M., Thomsen, C., Liu, R., Schnering, H. G. von, Hartweg, M., Yan, Y. F., and Zhao, Z. X., Solid State Commun. 66, 1225 (1988).CrossRefGoogle Scholar
14Hung, L.S., unpublished data.Google Scholar