Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T13:02:33.976Z Has data issue: false hasContentIssue false

Aurivillius-Popper mixed superconductors in BiO–CuO–(Sr0.5, Ca0.5)O system

Published online by Cambridge University Press:  31 January 2011

Mikio Fukuhara
Affiliation:
The Pennsylvania State University, Materials Research Laboratory, University Park, Pennsylvania 16802
Amar S. Bhalla
Affiliation:
The Pennsylvania State University, Materials Research Laboratory, University Park, Pennsylvania 16802
Laxman N. Mulay
Affiliation:
The Pennsylvania State University, Materials Research Laboratory, University Park, Pennsylvania 16802
Robert E. Newnham
Affiliation:
The Pennsylvania State University, Materials Research Laboratory, University Park, Pennsylvania 16802
Get access

Abstract

We report the effect of inhomogeneities on the electrical resistivity and ac magnetic susceptibility in Aurivillius-like bismuth mixed phase oxides of the BiO–CuO–(Sr0.5,Ca0.5)O system and propose a crystal structure of the major phase having highest Tc. Nominal Aurivillius compositions with molar ratios of BiO/(Sr0.5,Ca0.5)O = 1/2 are superconductors with Tc ranging from 83 to 107 K, and are accompanied by a large expansion during sintering due to the formation of Kirkendall voids. Tc increases with decreasing of the c lattice parameter. An oxide BiSrCaCu2Ox (n = 2) shows a maximum Tc value of 107 K and an onset of superconductivity at a much higher temperature. It seems that the structure of Bi2Sr2CaCu2Ox consists of an Aurivillius-like phase having two perovskite layers and a Popper mixed phase. The ac magnetic susceptibility showed an overall decrease in susceptibility with time up to 220 days. This appears to be related to the relief of intralattice strain.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. Lett. 27 (2), L209210 (1988).CrossRefGoogle Scholar
2Subramanian, M. A., Torardi, C. C., Calabrese, J. C., Gopalakrishnan, J., Morrissey, K. J., Askew, T. R., Flippen, R. B., Chowdhry, U., and Sleight, A. W., Science 239 (Feb. 26), 10151017 (1988).CrossRefGoogle Scholar
3Tarascon, J.M., LePage, Y., Barboux, P., Bagley, B.G., Greene, L.H., McKinnon, W. R., Hull, G.W., Giroud, M., and Hwang, D.M., Phys. Rev. B 37 (16), 93829389 (1988).CrossRefGoogle Scholar
4Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T., Togano, K., Kumakura, H., Uehara, M., Ikeda, S., Ogawa, K., Horiuchi, S., and Matsui, Y., presented at The International Conference on Superconductors at Interlaken, Switzerland, March 1, 1988.Google Scholar
5Bando, Y., Kijima, T., Kitami, Y., Tanaka, J., Izumi, F., and Yokoyama, M., Jpn. J. Appl. Phys. 27 (3), L358360 (1988).CrossRefGoogle Scholar
6Takayama-Muromachi, E., Uchida, Y., Ono, A., Izumi, F., Onoda, M., Matsui, Y., Kosuda, K., Takekawa, S., and Kato, K., Jpn. J. Appl. Phys. 27 (3), L365368 (1988).CrossRefGoogle Scholar
7Hazen, R.M., Prewitt, C.T., Angel, R.J., Ross, N.L., Finger, L.W., Hadidiacos, C. G., Veblen, D. R., Heaney, P. J., Hor, P. H., Meng, R. L., Sun, Y. Y., Wang, Y. Q., Xue, Y. Y., Huang, Z. J., Gao, L., Bechtoold, J., and Chu, C.W., Phys. Rev. Lett. 60, 11741177 (1988).CrossRefGoogle Scholar
8Aurivillius, B., Arki. Kemi. 1, 499512 (1949).Google Scholar
9Fukuhara, M., Bhalla, A., Newnham, R. E., Cross, L. E., and Roy, R., Materials Letters 6 (11,12), 398400 (1988).CrossRefGoogle Scholar
10Cava, R. J., Batlogg, B., Dover, R. B. van, Murphy, D.W., Sunshine, S., Siegrist, T., Remeika, J. P., Rietman, E.A., Zahurak, S., and Espinosa, G.P., Phys. Rev. Lett. 58 (16), 16761679 (1987).CrossRefGoogle Scholar
11Gattow, G. and Schroder, H., Z. Anorg. Allg. Chem. 318, 176189 (1962).CrossRefGoogle Scholar
12Grande, B. Von, Miiller-Buschbaum, H.-K., and Schweizer, M., Z. Anorg. Allg. Chem. 428, 120124 (1977).CrossRefGoogle Scholar
13Cao, W., Klemkosky, M., Ziegenfuss, G.H., Bhalla, A., and Mulay, L.N., Mater. Sci. & Eng. 100, Lll13 (1988).CrossRefGoogle Scholar
14Jones, W. D., Fundamental Principles of Powder Metallurgy (Edward Arnold, London, 1960), p. 769.Google Scholar
15Kuczynski, G. C., Sintering and Related Phenomena, edited by Kuczynsky, G. C. et al. (Gordon & Breach Science, New York, 1965), p. 687.Google Scholar
16Cava, R.J., Batlogg, B., Chen, C.H., Rietman, E.A., Zahurak, S.M., and Werder, D., Phys. Rev. B, 36, 57, 1922 (1987).Google Scholar
17Methfessel, C. and Methfessel, S., Superconductivity in d- and f-band metals, edited by Buckel, W. and Weber, W. (Kemiforschungszentrum, Karlsruhe, 1982), p. 393.Google Scholar
18Tarascon, J.M., Green, L.H., McKinnon, W. R., Hull, G.W., and Geballe, T. H., Science 233 (March 13), 13731376 (1987).CrossRefGoogle Scholar
19Newnham, R. E., Wolfe, R. W., and Dorrinan, J. F., Mater. Res. Bull. 6, 10291039 (1971).CrossRefGoogle Scholar
20Newnham, R. E., Wolfe, R.W., Horsey, R.S., Diaz-Colon, F. A., and Kay, M.I., Mater. Res. Bull. 8, 11831195 (1973).CrossRefGoogle Scholar
21Johnson, W. L., Glassy Metal, I, in Topics in Applied Physics, edited by Gruntherodt, H.-J. and Beck, H. (Springer-Verlag, New York, 1981), pp. 191, 194.Google Scholar
22Moodenbaugh, A. R., Suenaga, M., Asano, T., Shelton, R. N., Ku, H. C., Mccallum, R.W., and Klavins, P., Phys. Rev. Lett. 58, 18851887 (1987).CrossRefGoogle Scholar
23Cai, X., Joynt, R., and Larbalestier, D. C., Phys. Rev. Lett. 58, 27982801 (1987).CrossRefGoogle Scholar
24Fukuhara, M. and Bhalla, A. M., unpublished research.Google Scholar
25Atobe, K. and Yoshida, H., Phys. Rev. B 36, 71947196 (1987).CrossRefGoogle Scholar
26Oda, Y., Kohara, T., Nakada, I., Fujita, H., Kaneko, T., Toyoda, H., Sakagami, E., and Asayama, K., Jpn. J. Appl. Phys. 26 (5), L807808 (1987).CrossRefGoogle Scholar
27Bhargava, R. N., Herko, S. P., and Osborne, W. N., Phys. Rev. Lett. 59, 14681471 (1987).CrossRefGoogle Scholar
28Chen, J.T., Wenger, L. E., McEwan, C. J., and Logothtis, E. M., Phys. Rev. Lett. 58, 19721975 (1987).CrossRefGoogle Scholar
29Ovshinsky, S. R., Young, R. T., Allred, D. D., DeMaggio, G., and Leeden, G. A. Van der, Phys. Rev. Lett. 58, 25792581 (1987).CrossRefGoogle Scholar
30Ren, M.X., Ru, R. Y., Zhu, L. M., Yun, T. Q., Jin, L.Z., Hua, S.L., Qing, D.W., Hua, F. M., Yun, M. Q., Jiang, L. C., Hai, L. X., Liang, Q.G., and Yuan, C.M., Solid State Commun. 64 (3), 325326 (1987).CrossRefGoogle Scholar
31Riley, J. R., Sampath, W. S., Lee, K. Y., Mate, N., and Blake, J. W., Phys. Rev. B 37, 559561 (1988).CrossRefGoogle Scholar
32Erbil, A., Wright, A. C., and Boyd, E. P., Phys. Rev. B 37, 555558 (1988).CrossRefGoogle Scholar
33Maddin, R. and Masumoto, T., Mater. Sci. Eng. 9, 153162 (1972).CrossRefGoogle Scholar
34Dezsi, I., Pannaparayil, T., and Mulay, L. N., J. Appl. Phys. 61 (8), 43464348 (1988).CrossRefGoogle Scholar
35Beech, F., Miraglia, S., Santoro, A., and Roth, R. S., Phys. Rev. 35, 87788781 (1987).CrossRefGoogle Scholar