Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T11:20:33.009Z Has data issue: false hasContentIssue false

Auger electron spectroscopy and x-ray photoelectron spectroscopy analysis of angle of incidence effects of ion beam nitridation of GaAs

Published online by Cambridge University Press:  31 January 2011

J. S. Pan
Affiliation:
Department of Physics, National University of Singapore, Lower Kent Ridge Road, Singapore 119260, Republic of Singapore
C. H. A. Huan
Affiliation:
Department of Physics, National University of Singapore, Lower Kent Ridge Road, Singapore 119260, Republic of Singapore
A. T. S. Wee
Affiliation:
Department of Physics, National University of Singapore, Lower Kent Ridge Road, Singapore 119260, Republic of Singapore
H. S. Tan
Affiliation:
Department of Physics, National University of Singapore, Lower Kent Ridge Road, Singapore 119260, Republic of Singapore
K. L. Tan
Affiliation:
Department of Physics, National University of Singapore, Lower Kent Ridge Road, Singapore 119260, Republic of Singapore
Get access

Extract

Ion beam nitridation (IBN) of GaAs at room temperature was studied as a function of N2+ ion incident angle at ion energy of 10 keV. The ion beam bombardment surface area of GaAs was characterized in situ by both Auger electron spectroscopy (AES) and small spot-size x-ray photoelectron spectroscopy (XPS). Thin GaN reaction layers are formed at all N2+ ion incident angles, whereas the formation of As–N bonds has not been found. However, the degree of nitridation of Ga decreases with increasing incident angle. The observed angular dependence of the N incorporation can be explained in terms of sputtering yield, indicating that the growth kinetics can be described as a dynamic process comprising the accumulation of N and sputter removal of the surface layer. N2+ ion bombardment causes the depletion of As from the surface region because of the preferential sputtering of As from GaAs. The preferential sputtering of As reduces with increasing N2+ ion incident angle. The angular dependent behavior of preferential sputtering of As by 10 keV N2+ ions can be attributed to the angular dependence of GaN surface layer formation.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).CrossRefGoogle Scholar
2.Chandraesekhar, D., Smith, D. J., Strite, S., Lin, M. E., and Morkoc, H., J. Cryst. Growth 152, 135 (1995).CrossRefGoogle Scholar
3.Das, K. and Ferry, D. K., Solid-State Electron 19, 851 (1976).CrossRefGoogle Scholar
4.Pankove, J. I., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 515.Google Scholar
5.Davis, R. F., Proc. IEEE 79, 702 (1991).CrossRefGoogle Scholar
6.Strite, S., Lin, M. E., and Morkoc, H., Thin Solid Films 231, 197 (1993).CrossRefGoogle Scholar
7.Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).CrossRefGoogle Scholar
8.Nakamura, S., Mukai, T., and Senoh, M., Jpn. J. Appl. Phys. 30, L1998 (1991).CrossRefGoogle Scholar
9.Gourrier, S., Smit, L., Friedel, P., and Larsen, P. K., J. Appl. Phys. 54, 3993 (1983).CrossRefGoogle Scholar
10.Sato, H., Sasaki, T., Matsuoka, T., and Katsui, A., Jpn. J. Appl. Phys. 29, 1654 (1990).CrossRefGoogle Scholar
11.Powell, R. C., Lee, N. E., and Greene, J. E., Appl. Phys. Lett. 60, 2505 (1992).CrossRefGoogle Scholar
12.Kikuchi, A., Hoshi, H., and Kishino, , Jpn. J. Appl. Phys. 34, 1153 (1995).CrossRefGoogle Scholar
13.Delouise, L. A., J. Vac. Sci. Technol. A 11, 609 (1993).CrossRefGoogle Scholar
14.Delouise, L. A., J. Vac. Sci. Technol. A 10, 1637 (1992).CrossRefGoogle Scholar
15.Hu, H. K., Murray, P. T., Fukuda, Y., and Rabalais, J. W., J. Chem. Phys. 74, 2247 (1981).CrossRefGoogle Scholar
16.Shamir, N., Baldwin, D. A., Darko, T., Rabalais, J. W., and Hochmann, P., J. Chem. Phys. 76, 6417 (1982).CrossRefGoogle Scholar
17.Herbot, N., Hellman, O. C., Ye, P., Wang, X.D., and Vancauwenberghe, O., in Low Energy Ion-Surface Interactions, edited by Rabalais, J. W. (John Wiley & Sons Ltd. New York, 1994), p. 387.Google Scholar
18.Vancauwenberghe, O., Hellman, O. C., Herbots, N., Olson, J. L., Tan, W. J., and Croft, W. J., in Low Energy Ion Beam and Plasma Modification of Materials, edited by Harper, J. M. E., Miyake, K., McNeil, J. R., and Gorbatkin, S. M. (Mater. Res. Soc. Symp. Proc. 223, Pittsburgh, PA, 1991).Google Scholar
19.Handbook of Auger Electron Spectroscopy, 2nd ed., edited by Davis, L. E., Macdonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E. (Perkin-Elmer Corporation, Eden Prairie, MN), p. 15.Google Scholar
20.Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. (Perkin-Elmer Corporation, Eden Prairie, MN, 1992).Google Scholar
21. VG Scientific Technical Document TD 8618.Google Scholar
22.Storm, W., Wolany, D., Schröder, F., Becker, G., Burkhardt, B., Wiedmann, L., and Benninghoven, A., J. Vac. Sci. Technol. B 12, 1479 1994).Google Scholar
23.Troost, D., Baier, H-U., Berger, A., and Mönch, W., Surf. Sci. 242, 324 (1991).CrossRefGoogle Scholar
24.Solomon, J. S. and Grant, J. T., J. Vac. Sci. Technol. B 12, 199 (1994).CrossRefGoogle Scholar
25.Eastman, D. E., Chiang, T. C., Heimann, P., and Himpsel, F. J., Phys. Rev. Lett. 45, 656 (1980).CrossRefGoogle Scholar
26.Zhu, X-Y., Wolf, M., and White, J. M., J. Vac. Sci. Technol. A 11, 838 (1993).CrossRefGoogle Scholar
27.Hedman, J. and Mårtensson, N., Phys. Scripta 22, 176 (1980).CrossRefGoogle Scholar
28.Vancauwenberghe, O., Herbots, N., Manoharan, H., and Ahrens, M., J. Vac. Sci. Technol. A 9, 1035 (1991).CrossRefGoogle Scholar
29.Pan, J. S., Wee, A. T. S., Huan, C. H. A., Tan, H. S., and Tan, K. L., Vacuum 47, 1495 (1996).CrossRefGoogle Scholar
30.Alay, J. L. and Vandervorst, W., J. Vac. Sci. Technol. A 10, 2926 (1992).CrossRefGoogle Scholar
31.Andersen, H. H. and Bay, H. L., in Topics in Applied Physics: Sputtering by Particle Bombardment I, edited by Behrisch, R. (Springer-Verlag, Berlin, Heidelberg, 1981), Vol. 47, p. 201.Google Scholar
32.Marsh, T. and Collins, R., Radiat. Eff. 99, 171 (1986).CrossRefGoogle Scholar
33.Herbots, N., Hellman, O. C., and Vancauwebberghe, O., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G. S., Rehn, L. E., and Follstaedt, D. M. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992), p. 769.Google Scholar
34.Mezentzeff, P., Lifshitz, Y., and Rabalais, J. W., Nucl. Instrum. Methods B 44, 289 (1990).CrossRefGoogle Scholar
35.Carter, G. and Armour, D. G., Thin Solid Films 80, 13 (1981).CrossRefGoogle Scholar
36.Carter, G., Katardjiev, I. V., and Nobes, M. J., Vacuum 38, 117 (1988).CrossRefGoogle Scholar
37.DeLouise, L. A., J. Appl. Phys. 70, 1718 (1991).CrossRefGoogle Scholar
38.Singer, I. L., Murday, J. S., and Cooper, L. R., Surf. Sci. 108, 7 (1984).CrossRefGoogle Scholar
39.Tanuma, S., Powell, C. J., and Penn, D. R., Surf. Interface Anal. 11, 577 (1988).CrossRefGoogle Scholar