Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T05:30:58.527Z Has data issue: false hasContentIssue false

Atomistic considerations on the fracture toughness of brittle materials

Published online by Cambridge University Press:  31 January 2011

M. Sakai
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, Japan
Get access

Abstract

A simple atomistic approach to the mechanical strength and the fracture toughness of brittle materials is made by the use of a universal expression for binding potential energy versus atomic separation curves. The scaling factors for the atomic separation and for the energy amplitude successfully apply to describing the intrinsic fracture toughness K* in a scaled dimensionless form. It is demonstrated that the intrinsic fracture toughness combined with a stress shielding coefficient (SSC) yields the fracture toughness of real materials. Microfracture mechanisms for crack-tip stress-shielding processes, as well as the interrelationship between the stress intensity- and the potential energy-derived fracture toughness, are addressed.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Broek, D.Elementary Engineering Fracture Mechanics, 4th ed. (Nijhoff, Dordrecht, 1986), Chap. 1.Google Scholar
2Yokobori, T.Eng. Fract. Mech. 40, 705720 (1991).CrossRefGoogle Scholar
3Sakai, M. and Miyajima, T.Comp. Sci. Tech. 40, 231250 (1991).CrossRefGoogle Scholar
4Miyajima, T. and Sakai, M.J. Mater. Res. 6, 539547 (1991).CrossRefGoogle Scholar
5Sakai, M.J. Ceram. Soc. Jpn. 99, 983992 (1991).CrossRefGoogle Scholar
6Orowan, E.Rep. Prog. Phys. 12, 185192 (1949).CrossRefGoogle Scholar
7Inglis, C.E.Trans. Inst. Nav. Archit. 55, 213241 (1913).Google Scholar
8Davidge, R. W.Mechanical Behavior of Ceramics (Cambridge University Press, London, 1979), Chap. 3.Google Scholar
9Fuller, E. R. Jr. and Thomson, R.M.Fract. Mech. Ceram. 4, 507548 (1978).Google Scholar
10Fuller, E. R. Jr. , Lawn, B. R. and Thomson, R. M.Acta Metall. 28, 14071414 (1980).CrossRefGoogle Scholar
11Lawn, B.R.J. Am. Ceram. Soc. 66, 8391 (1983).CrossRefGoogle Scholar
12Hertzberg, R. W.Deformation and Fracture Mechanics of Engineering Materials, 2nd ed. (John Wiley, New York, 1983), Chaps. 7-8.Google Scholar
13Creager, M. and Paris, P.C.Int. J. Fract. Mech. 3, 247253 (1967).CrossRefGoogle Scholar
14Rose, J.H.Ferrante, J. and Smith, J.R.Phys. Rev. Lett. 47, 675678 (1981).CrossRefGoogle Scholar
15Green, D.J. R. Hannink, H. J. and Swain, M.V.Transformation Toughening of Ceramics (CRC Press, Boca Raton, FL, 1989), Chap. 3.Google Scholar
16Sakai, M. and Bradt, R.C.J. Ceram. Soc. Jpn. 96, 801809 (1988).CrossRefGoogle Scholar
17Evans, A. G. and Cannon, R. M.Acta Metall. 34, 761800 (1986).CrossRefGoogle Scholar