Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T21:58:40.745Z Has data issue: false hasContentIssue false

Atomic scale oxide superlattices grown by RHEED controlled pulsed laser deposition

Published online by Cambridge University Press:  03 March 2011

T.M. Shaw
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
A. Gupta
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
M.Y. Chern
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
P.E. Batson
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
R.B. Laibowitz
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
B.A. Scott
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

By depositing thin films under conditions where intensity oscillations are observed in RHEED (reflection high-energy electron diffraction) spots, unit cell level multilayers of SrTiO3/BaTiO3 structures have been grown by pulsed laser ablation. High resolution TEM (transmission electron microscopy) and STEM (scanning transmission electron microscopy) observations of the deposits show that epitaxial multilayers with layer thicknesses of 1, 2, 4, 8, and 16 unit cells can be grown on [100] orientation SrTiO3 substrates. The superlattices show partial intermixing of the Sr and Ba for layer thicknesses less than 8 unit cells, but incomplete intermixing occurs even when the layers are only a single unit cell thick. From observations of the degree of intermixing at different depths in the deposit, it was determined that most of the intermixing takes place during deposition and not during subsequent annealing of the deposit. The 16 and 8 unit cell thick BaTiO3 layers were found to be tetragonal with the c-axis of the layers oriented normal to the substrate but with the a-axis strained to coherently match the SrTiO3 layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Terashima, T., Bando, Y., Iijima, K., Yamamoto, K., Hirata, K., Hayashi, K., Kamigaki, K., and Terauchi, H., Phys. Rev. Lett. 65, 2684 (1990).CrossRefGoogle Scholar
2Kanai, M., Kawai, T., and Kawai, S., Appl. Phys. Lett. 58, 771 (1991).CrossRefGoogle Scholar
3Bando, Y., Terashima, T., Shiraura, K., Sato, T., Matsuda, Y., Komiyama, S., Kamigaki, K., and Terauchi, H., Physica C 185, 204 (1991).CrossRefGoogle Scholar
4Koinuma, H., Nagata, H., Tsukahara, T., Gonda, S., and Yoshimoto, M., Appl. Phys. Lett. 58, 2028 (1991).CrossRefGoogle Scholar
5Chern, M. Y., Gupta, A., Hussey, B. W., and Shaw, T. M., J. Vac. Sci. Technol. A 11, 637 (1993).CrossRefGoogle Scholar
6Iijima, K., Terashima, T., Yamamoto, K., Hirata, K., and Bando, Y., Appl. Phys. Lett. 56, 527 (1990).CrossRefGoogle Scholar
7Koyama, K., Sakuma, T., Yamamichi, S., Watanabe, H., Aoki, H., Ohya, S., Miyasaka, Y., and Kikkawa, T., IEDM Tech. Dig., 823 (1991).Google Scholar
8Fujii, E., Uemoto, Y., Hayashi, S., Nasu, T., Shimada, Y., Matsuda, A., Kibe, M., Azuma, M., Otsuki, T., Kano, G., Scott, M., McMillan, L. D., and Paz de Arraujo, C. A., IEDM Tech. Dig., 267 (1992).Google Scholar
9Roy, D. and Krupanidhi, S. B., Appl. Phys. Lett. 62, 1056 (1993).CrossRefGoogle Scholar
10Iijima, K., Terashima, T., Bando, Y., Kamigaki, K., and Terauchi, H., J. Appl. Phys. 72, 2840 (1992).CrossRefGoogle Scholar
11Durst, G., Grotenhuis, M., and Barkow, A. G., J. Am. Ceram. Soc. 33, 133 (1950).CrossRefGoogle Scholar
12Chern, M. Y., Gupta, A., and Hussey, B. W., Appl. Phys. Lett. 60, 3046 (1992).Google Scholar
13Stadelmann, P. A., Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
14Pennycook, S. J. and Boattner, L. A., Nature 336, 565 (1989).CrossRefGoogle Scholar
15Pennycook, S. J., Ultramicroscopy 30, 58 (1989).CrossRefGoogle Scholar
16Ourmazd, A., Baumann, F. H., Bode, M., and Kim, Y., Ultramicroscopy 34, 237255 (1990).CrossRefGoogle Scholar
17Hillyard, S., Loane, R. F., and Silcox, J., Ultramicroscopy 49, 1425 (1993).CrossRefGoogle Scholar
18Crank, J., The Mathmatics of Diffusion (Oxford University Press, Oxford, 1975), p. 16.Google Scholar
19Merz, W. J., Phys. Rev. 76, 1221 (1949).CrossRefGoogle Scholar