Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T01:45:13.823Z Has data issue: false hasContentIssue false

Atomic layer deposition of tantalum nitride for ultrathin liner applications in advanced copper metallization schemes

Published online by Cambridge University Press:  03 March 2011

Oscar van der Straten
Affiliation:
School of NanoSciences and NanoEngineering and UAlbany Institute for Materials, The University at Albany–State University of New York, Albany, New York 12203
Yu Zhu
Affiliation:
School of NanoSciences and NanoEngineering and UAlbany Institute for Materials, The University at Albany–State University of New York, Albany, New York 12203
Kathleen Dunn
Affiliation:
School of NanoSciences and NanoEngineering and UAlbany Institute for Materials, The University at Albany–State University of New York, Albany, New York 12203
Eric T. Eisenbraun
Affiliation:
School of NanoSciences and NanoEngineering and UAlbany Institute for Materials, The University at Albany–State University of New York, Albany, New York 12203
Alain E. Kaloyeros*
Affiliation:
School of NanoSciences and NanoEngineering and UAlbany Institute for Materials, The University at Albany–State University of New York, Albany, New York 12203
*
a)Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

A metal–organic thermal atomic layer deposition (ALD) approach was developed for the growth of ultrathin tantalum nitride (TaNx) films by alternate pulses of tert-butylimido trisdiethylamido tantalum (TBTDET) and ammonia (NH3). An optimized ALD process window was established by investigating saturation of film-growth rate versus TBTDET and NH3 exposures, as controlled by the length of reactant pulses and the duration of the inert gas purge cycles separating the reactant pulses. The resulting low-temperature (250 °C) ALD process yielded uniform, continuous, and conformal TaNx films with a Ta:N ratio of 1:1. Carbon and oxygen impurity levels were in the 5–8 at.% range. Associated film conformality in 100-nm trench structures with 11:1 aspect ratio was nearly 100%.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kaloyeros, A.E. and Eisenbraun, E., Annu. Rev. Mater. Sci. 30 363 (2000).CrossRefGoogle Scholar
2Murarka, S.P., Verner, I.V. and Gutmann, R.J.Copper—Fundamental Mechanisms for Microelectronic Applications (John Wiley & Sons, New York, 2000).Google Scholar
3Rossnagel, S.M. and Kim, H., in Proceedings of the 2001 IEEE International Interconnect Technology Conference (IITC), Burlingame, June 4–6 (2001).Google Scholar
4Suntola, T., Thin Solid Films 216 84 (1992).CrossRefGoogle Scholar
5Ritala, M. and Leskelä, M. in Handbook of Thin Film Materials edited by Nalwa, H.S. (Academic Press, San Diego, CA, 2002), Vol. 1.Google Scholar
6International Technology Roadmap for Semiconductors, 2001 edition (Semiconductor Industry Association, San Jose, CA, 2001).Google Scholar
7Reid, J.S., Kolawa, E. and Nicolet, M-A., J. Mater. Res. 7, 2424 (1992).CrossRefGoogle Scholar
8Hillman, J., Hautala, J. and Caliendo, S.Proceedings of the Advanced Metallization Conference 2000, edited by Edelstein, D., Dixit, G., Yasuda, Y., and Ohba, T. (Materials Research Society, Warrendale, PA, 2000), pp. 313319.Google Scholar
9Takahashi, T., Itoh, H. and Ozeki, S., J. Less-Common Metals 52 29 (1977).CrossRefGoogle Scholar
10Chen, X., Frisch, H.L., Kaloyeros, A.E., Arkles, B. and Sullivan, J., J. Vac. Sci. Technol. B 17 182 (1999).CrossRefGoogle Scholar
11Chen, X., Peterson, G.G., Goldberg, C., Nuesca, G., Frisch, H.L. and Kaloyeros, A.E., J. Mater. Res. 14 2043 (1999).CrossRefGoogle Scholar
12Kaloyeros, A.E., Chen, X., Stark, T., Kumar, K., Seo, S-C., Peterson, G.G., Frisch, H.L., Arkles, B. and Sullivan, J., J. Electrochem. Soc. 146 170 (1999).CrossRefGoogle Scholar
13Okamoto, Y., J. Cryst. Growth 197 236 (1999).CrossRefGoogle Scholar
14Hiltunen, L., Leskelä, M., Mäkelä, M., Niinistö, L., Nykänen, E. and Soininen, P., Thin Solid Films 166 149 (1988).CrossRefGoogle Scholar
15Ritala, M., Kalsi, P., Riihelä, D., Kukli, K., Leskelä, M. and Jokinen, J., Chem. Mater. 11 1712 (1999).CrossRefGoogle Scholar
16Juppo, M., Ritala, M. and Leskelä, M., J. Electrochem. Soc. 147 3377 (2000).CrossRefGoogle Scholar
17Alén, P., Juppo, M., Ritala, M., Leskelä, M., Sajavaara, T. and Keinonen, J., J. Mater. Res. 17 107 (2002).CrossRefGoogle Scholar
18Fix, R., Gordon, R.G. and Hoffman, D.M., Chem. Mater. 5 614 (1993).CrossRefGoogle Scholar
19Hoffman, D.M., Polyhedron 13 1169 (1994).CrossRefGoogle Scholar
20Han, C-H., Cho, K-N., Oh, J-E., Paek, S-H., Park, C-S., Lee, S-I., Lee, M.Y. and Lee, J.G., Jpn. J. Appl. Phys. 37 2646 (1998).CrossRefGoogle Scholar
21Cho, K-N., Han, C-H., Noh, K-B., Oh, J-E., Paek, S-H., Park, C-S., Lee, S-I., Lee, M.Y. and Lee, J.G., Jpn. J. Appl. Phys. 37 6502 (1998).CrossRefGoogle Scholar
22Im, S-J., Kim, S-H., Park, K-C., Cho, S-L. and Kim, K-B. in Materials Technology and Reliability for Advanced Interconnects and Low-k Dielectrics edited by Oehrlein, G.S., Maex, K., Y–C. Joo, S. Ogawa, and J.T. Wetzel (Mater. Res. Soc. Symp. Proc. 612 Warrendale, PA, 2001), pp. D.6.7.1–D.6.7.6.Google Scholar
23Jun, G.C., Cho, S.L., Kim, K-B., Shin, H-K. and Kim, D-H., Jpn. J. Appl. Phys. 37 L30 (1998).CrossRefGoogle Scholar
24Chiu, H-T., Chuang, S-H., Tsai, C.E., Lee, G-H. and Peng, S.M., Polyhedron 17(13–14), 2187 (1998).CrossRefGoogle Scholar
25Tsai, M.H., Sun, S.C., Chiu, H.T., Tsai, C.E. and Chuang, S.H., Appl. Phys. Lett. 67 1128 (1995).CrossRefGoogle Scholar
26Tsai, M.H., Sun, S.C., Lee, C.P., Chiu, H.T., Tsai, C.E., Chuang, S.H. and Wu, S.C., Thin Solid Films 270 531 (1995).CrossRefGoogle Scholar
27Tsai, M.H., Sun, S.C., Tsai, C.E., Chuang, S.H. and Chiu, H.T., J. Appl. Phys. 79 6932 (1996).CrossRefGoogle Scholar
28Sun, S.C. in Stress Induced Phenomena in Metallization, edited by Okabayashi, H., Shingubara, S., and Ho, P.S., AIP Conf. Proc. No. 418 (1998), pp. 451456.CrossRefGoogle Scholar
29Kim, S-H. and Kim, K-B., in 197th Electrochemical Society Meeting Proceedings (Toronto, Ontario, Canada, May 14–18, 2000).Google Scholar
30Ohshita, Y., Ogura, A., Hoshino, A., Hiiro, S. and Machida, H., J. Cryst. Growth 220 604 (2000).CrossRefGoogle Scholar
31Machida, H., Hoshino, A., Suzuki, T., Ogura, A. and Ohshita, Y., J. Cryst. Growth 237–239 586 (2002).CrossRefGoogle Scholar
32Chiu, H-S. and Chang, W-P., J. Mater. Sci. Lett. 11 96 (1992).CrossRefGoogle Scholar
33Chiu, H-S. and Chang, W-P., J. Mater. Sci. Lett. 11 570 (1992).CrossRefGoogle Scholar
34Senzaki, Y., Hochberg, A.K. and Norman, J.A.T., Adv. Mater. Opt. Electron. 10 93 (2000).3.0.CO;2-Q>CrossRefGoogle Scholar
35Winter, C.H., Jayaratne, K.C. and Proscia, J.W. in Covalent Ceramics II: Non-Oxides, edited by Barron, A.R., Fischman, G.S., Fury, M.A., and Hepp, A.F. (Mater. Res. Soc. Proc. 327 Pittsburgh, PA, 1994), pp. 103108.Google Scholar
36Park, J-S., Lee, M-J., Lee, C-S. and Kang, S-W., Electrochem. Solid-State Lett. 4 C17 (2001).CrossRefGoogle Scholar
37Park, J-S., Park, H-S. and Kang, S-W., J. Electrochem. Soc. 149 C28 (2002).CrossRefGoogle Scholar
38George, S.M., Ott, A.W. and Klaus, J.W., J. Phys. Chem. 100 13121 (1996).CrossRefGoogle Scholar
39Banaszak Holl, M.M., Kersting, M., Pendley, B.D. and Wolczanski, P.T., Inorg. Chem. 29 1518 (1990).CrossRefGoogle Scholar
40Banaszak Holl, M.M., Wolczanski, P.T. and Van Duyne, G.D., J. Am. Chem. Soc. 112 7989 (1990).CrossRefGoogle Scholar