Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T01:31:08.678Z Has data issue: false hasContentIssue false

Assembled graphene oxide and single-walled carbon nanotube ink for stable supercapacitors

Published online by Cambridge University Press:  23 January 2013

Shirui Guo
Affiliation:
Department of Chemistry, University of California Riverside, California 92521
Wei Wang
Affiliation:
Materials Science and Engineering Program, University of California Riverside, California 92521
Cengiz S. Ozkan*
Affiliation:
Program of Materials Science and Engineering, University of California Riverside, California 92521; and Department of Mechanical Engineering, University of California Riverside, California 92521
Mihrimah Ozkan*
Affiliation:
Department of Chemistry, University of California Riverside, California 92521; and Department of Electrical Engineering, University of California Riverside, California 92521
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

We describe the synthesis and fabrication of a graphene oxide (GO) and single-walled carbon nanotube (SWCNT) composite ink (GO–SWCNT ink) for electrochemically stable supercapacitors. Atomic force microscopy and scanning electron microscopy studies demonstrate that the obtained GO flakes are single layer with size distribution from 100 nm to 20 μm. SWCNTs are dispersed using a GO aqueous solution (2 mg/mL) with sonication support to achieve a SWCNT concentration of 12 mg/mL, the highest reported value so far without surfactant assistance. Raman spectroscopy studies indicate that the full-width at half-maximum of the G band increases with the mixing of SWCNT and GO indicating that electronic structure changes via π–π interactions of GO sheets and SWCNTs. Paper-based electrodes of supercapacitor were conveniently fabricated with GO–SWCNT composite ink via a dip casting method. By using different concentrations of SWCNT in the ink, the paper electrodes provide different capacitance values. The highest value of specific capacitance reaches 295 F/g at a current density of 0.5 A/g with a GO/SWCNT weight ratio of 1:5. The cycling stability for the GO–SWCNT paper electrode supercapacitors indicates capacitance retention of 85% over 60,000 cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhong, Z.H., Wang, D.L., Cui, Y., Bockrath, M.W., and Lieber, C.M.: Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377 (2003).CrossRefGoogle ScholarPubMed
Rogers, J.A.: Electronic materials - making graphene for macroelectronics. Nat. Nanotechnol. 3, 254 (2008).CrossRefGoogle ScholarPubMed
Guo, S., Ghazinejad, M., Qin, X., Sun, H., Wang, W., Zaera, F., Ozkan, M., and Ozkan, C.S.: Tuning electron transport in graphene-based field-effect devices using block co-polymers. Small 8, 1073 (2012).CrossRefGoogle Scholar
Guo, S-R., Lin, J., Penchev, M., Yengel, E., Ghazinejad, M., Ozkan, C.S., and Ozkan, M.: Label free DNA detection using large area graphene based field effect transistor biosensors. J. Nanosci. Nanotechnol. 11, 5258 (2011).CrossRefGoogle ScholarPubMed
Shukla, M.K., Dubey, M., and Leszczynski, J.: Theoretical investigation of electronic structures and properties of C-60-gold nanocontacts. ACS Nano 2, 227 (2008).CrossRefGoogle Scholar
Wehling, T.O., Novoselov, K.S., Morozov, S.V., Vdovin, E.E., Katsnelson, M.I., Geim, A.K., and Lichtenstein, A.I.: Molecular doping of graphene. Nano Lett. 8, 173 (2008).CrossRefGoogle ScholarPubMed
Ang, P.K., Chen, W., Wee, A.T.S., and Loh, K.P.: Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392 (2008).CrossRefGoogle ScholarPubMed
Wu, J.B., Agrawal, M., Becerril, H.A., Bao, Z.N., Liu, Z.F., Chen, Y.S., and Peumans, P.: Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43 (2010).CrossRefGoogle ScholarPubMed
Wang, Y., Chen, X.H., Zhong, Y.L., Zhu, F.R., and Loh, K.P.: Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 95, 063302 (2009).CrossRefGoogle Scholar
Alivisatos, A.P., Gur, I., Fromer, N.A., Chen, C.P., and Kanaras, A.G.: Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett. 7, 409 (2007).Google Scholar
Zhu, Y.W., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W.W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., and Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011).CrossRefGoogle ScholarPubMed
Dai, L., Chang, D.W., Baek, J-B., and Lu, W.: Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130 (2012).CrossRefGoogle ScholarPubMed
Zhai, Y.P., Dou, Y.Q., Zhao, D.Y., Fulvio, P.F., Mayes, R.T., and Dai, S.: Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828 (2011).CrossRefGoogle ScholarPubMed
El-kady, M.F., Strong, V., Dubin, S., and Kaner, R.B.: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326 (2012).CrossRefGoogle ScholarPubMed
Ziegler, K.J., Gu, Z.N., Peng, H.Q., Flor, E.L., Hauge, R.H., Smalley, R.E.: Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 1541 (2005).CrossRefGoogle ScholarPubMed
Sato, H. and Sano, M.: Characteristics of ultrasonic dispersion of carbon nanotubes aided by antifoam. Colloids Surf., A 322, 103 (2008).CrossRefGoogle Scholar
Peng, X.H. and Wong, S.S.: Functional covalent chemistry of carbon nanotube surfaces. Adv. Mater. 21, 625 (2009).CrossRefGoogle Scholar
Zhan, G.D., Du, X.H., King, D.M., Hakim, L.F., Liang, X.H., McCormick, J.A., and Weimer, A.W.: Atomic layer deposition on bulk quantities of surfactant-modified single-walled carbon nanotubes. J. Am. Ceram. Soc. 91, 831 (2008).CrossRefGoogle Scholar
Campbell, J.F., Tessmer, I., Thorp, H.H., and Erie, D.A.: Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots. J. Am. Chem. Soc. 130, 10648 (2008).CrossRefGoogle ScholarPubMed
Ou, Y.Y. and Huang, M.H.: High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. J. Phys. Chem. B 110, 2031 (2006).CrossRefGoogle ScholarPubMed
Luo, J.Y., Cote, L.J., Tung, V.C., Tan, A.T.L., Goins, P.E., Wu, J.S., and Huang, J.X.: Graphene oxide nanocolloids. J. Am. Chem. Soc. 132, 17667 (2010).CrossRefGoogle ScholarPubMed
Yu, D.S. and Dai, L.M.: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467 (2010).CrossRefGoogle Scholar
Shen, J.M., Liu, A.D., Tu, Y., Foo, G.S., Yeo, C.B., Chan-Park, M.B., Jiang, R.R., and Chen, Y.: How carboxylic groups improve the performance of single-walled carbon nanotube electrochemical capacitors? Energy Environ. Sci. 4, 4220 (2011).CrossRefGoogle Scholar
Zhao, B., Liu, P., Jiang, Y., Pan, D.Y., Tao, H.H., Song, J.S., Fang, T., and Xu, W.W.: Supercapacitor performances of thermally reduced graphene oxide. J. Power Sources 198, 423 (2012).CrossRefGoogle Scholar
Chen, Y., Zhang, X.O., Zhang, D.C., Yu, P., and Ma, Y.W.: High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49, 573 (2011).CrossRefGoogle Scholar
Jha, N., Ramesh, P., Bekyarova, E., Itkis, M.E., and Haddon, R.C.: High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture. Adv. Energy Mater. 2, 438 (2012).CrossRefGoogle Scholar
Aboutalebi, S.H., Chidembo, A.T., Salari, M., Konstantinov, K., Wexler, D., Liu, H.K., and Dou, S.X.: Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4, 1855 (2011).CrossRefGoogle Scholar
Jiang, J., Liu, J., Zhou, W., Zhu, J., Huang, X., Qi, X., Zhang, H., and Yu, T.: CNT/Ni hybrid nanostructured arrays: Synthesis and application as high-performance electrode materials for pseudocapacitors. Energy Environ. Sci. 4, 50005007 (2011).CrossRefGoogle Scholar
Li, H., Xu, C., Srivastava, N., and Banerjee, K.: Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects. IEEE Trans. Electron Devices 56, 1799 (2009).CrossRefGoogle Scholar
Wang, Y., Shi, Z.Q., Huang, Y., Ma, Y.F., Wang, C.Y., Chen, M.M., Chen, Y.S.: Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103 (2009).CrossRefGoogle Scholar
Wang, W., Guo, S., Penchev, M., Ruiz, I., Bozhilov, K.N., Yan, D., Ozkan, M., and Ozkan, C.S.: Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy. http://dx.doai.org/10.1016/j.nanoen.2012.10.001.Google Scholar
Kaempgen, M., Chan, C.K., Ma, J., Cui, Y., and Gruner, G.: Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872 (2009).CrossRefGoogle ScholarPubMed
Hu, L.B., Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.F., and Cui, Y.: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. U.S.A. 106, 21490 (2009).CrossRefGoogle ScholarPubMed
Kim, J., Cote, L.J., Kim, F., Yuan, W., Shull, K.R., and Huang, J.X.: Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132, 8180 (2010).CrossRefGoogle ScholarPubMed
Hummers, W.S. Jr and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
Ali, F., Agarwal, N., Nayak, P.K., Das, R., and Periasamy, N.: Chemical route to the formation of graphene. Curr. Sci. 97, 682 (2009).Google Scholar
Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z.Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010).CrossRefGoogle ScholarPubMed
Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39 228 (2010).CrossRefGoogle ScholarPubMed
Szabo, T., Berkesi, O., and Dekany, I.: DRIFT study of deuterium-exchanged graphite oxide. Carbon 43, 3186 (2005).CrossRefGoogle Scholar
Qiu, L., Yang, X.W., Gou, X.L., Yang, W.R., Ma, Z.F., and Wallace, G.G., and Li, D.: Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem. Eur. J. 16, 10653 (2010).CrossRefGoogle ScholarPubMed
Das, B., Voggu, R., Rout, C.S., and Rao, C.N.R.: Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem. Commun. 2008, 5155 (2008).CrossRefGoogle Scholar
Chen, Z., Augustyn, V., Wen, J., Zhang, Y.W., Shen, M.Q., Dunn, B., and Lu, Y.F.: High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 23, 791 (2011).CrossRefGoogle ScholarPubMed
Yang, F., Luo, B., Jia, Y., Li, X., Wang, B., Song, Q., Kang, F., and Zhi, L.: Renewing functionalized graphene as electrodes for high performance supercapacitors. Adv. Mater. 24, 63486355 (2012).Google Scholar
Al-zubaidi, A., Inoue, T., Matsushita, T., Ishii, Y., Hashimoto, T., and Kawasaki, S.: Cyclic voltammogram profile of single-walled carbon nanotube electric double-layer capacitor electrode reveals dumbbell shape. J. Phys. Chem. C 116, 7681 (2012).CrossRefGoogle Scholar
Yamada, Y., Tanaka, T., Machida, K., Suematsu, S., Tamamitsu, K., Kataura, H., and Hatori, H.: Electrochemical behavior of metallic and semiconducting single-wall carbon nanotubes for electric double-layer capacitor. Carbon 50, 1422 (2012).CrossRefGoogle Scholar
Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 4, 50605067 (2011).CrossRefGoogle Scholar
Chen, C.H., Tsai, D.S., Chung, W.H., Lee, K.Y., Chen, Y.M., and Huang, Y.S.: Electrochemical capacitors of miniature size with patterned carbon nanotubes and cobalt hydroxide. J. Power Sources 205, 510 (2012).CrossRefGoogle Scholar
Arepalli, S., Fireman, H., Huffman, C., Moloney, P., Nikolaev, P., Yowell, L., Higgins, C.D., Kim, K., Kohl, P.A., Turano, S.P., and Ready, W.J.: Carbon-nanotube-based electrochemical double-layer capacitor technologies for spaceflight applications. JOM 57, 26 (2005).CrossRefGoogle Scholar
Supplementary material: File

Guo Supplementary Material

Appendix

Download Guo Supplementary Material(File)
File 1.2 MB