Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T04:29:27.088Z Has data issue: false hasContentIssue false

Aspects of the Shi–Seinfeld–Okuyama theory of transient nucleation

Published online by Cambridge University Press:  03 March 2011

G. Sundar
Affiliation:
Department of Mechanical and Materials Engineering, Washington State University, Pultman Washington 99164-2920
J.J. Hoyt
Affiliation:
Department of Mechanical and Materials Engineering, Washington State University, Pultman Washington 99164-2920
Get access

Abstract

The analytic solution to the time-dependent nucleation problem by Shi-Seinfeld-Okuyama (SSO) [Phys. Rev. A 41, 2101 (1990)] is reviewed. The singular perturbation solution employed by SSO is extended to examine the effect of initial quench position on the incubation time. Two cases are discussed. The first investigates the role of excess vacancies from the high temperature quench on the transient kinetics. The second case examines the change in the incubation time due to the effects of a preexisting subcritical cluster size distribution which forms during the high temperature anneal.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Becker, R. and Doring, W., Ann Phys. 24, 719 (1935).CrossRefGoogle Scholar
2Zeldovich, J. B., J. Exp. Theor. Phys. 12, 525(1942) (in Russian); Acta Phys. Chem. (USSR) 1, 18 (1943) (in English).Google Scholar
3Frenkel, J. I., Kinetic Theory of Liquids (Oxford University Press, London, 1946).Google Scholar
4Binder, K. and Stauffer, D., Adv. Phys. 25, 343 (1976).CrossRefGoogle Scholar
5Kantrowitz, A., J. Chem. Phys. 19, 1097 (1951).CrossRefGoogle Scholar
6Probstein, R., J. Chem. Phys. 19, 619 (1951).CrossRefGoogle Scholar
7Trinkaus, H. and Yoo, M. H., Philos. Mag. A55, 269 (1987).CrossRefGoogle Scholar
8Shi, G., Seinfeld, J. H., and Okuyama, K., Phys. Rev. A 41, 2101 (1990).CrossRefGoogle Scholar
9Shi, G. and Seinfeld, J. H., J. Chem. Phys. 93, 9033 (1990).CrossRefGoogle Scholar
10Hoyt, J. J. and Sundar, G., Scripta Metall. 29, 1535 (1993).CrossRefGoogle Scholar
11Shi, G. and Seinfeld, J. H., Mater. Chem. Phys. 37, (1994).CrossRefGoogle Scholar
12Aaronson, H. I. and LeGoues, F.K., Metall. Trans. A 23A, 1915 (1992).CrossRefGoogle Scholar
13Lasek, J., Czech. J. Phys. 15, 848 (1965).CrossRefGoogle Scholar
14Rundman, K. B. and Hilliard, J. E., Acta. Metall. 15, 1025 (1967).CrossRefGoogle Scholar
15Schwann, D. and Schmatz, W., Acta Metall. 26, 1571 (1978).CrossRefGoogle Scholar
16LeGoues, F.K. and Aaronson, H.I., Acta Metall. 32(10), 1855 (1984).CrossRefGoogle Scholar
17Langer, J. S. and Schwartz, A. J., Phys. Rev. A 21, 948 (1980).CrossRefGoogle Scholar
18Sundar, G., Hoyt, J. J., and Spooner, S., Phys. Rev. B 46(21), 14266 (1992).CrossRefGoogle Scholar
19Sundar, G., Kenik, E. A., Hoyt, J. J., and Spooner, S., in Crystallization and Related Phenomena in Amorphous Materials, edited by Libera, M., Haynes, T. E., Cebe, P., and Dickinson, J. Jr. (Mater. Res. Soc. Symp. Proc. 321, Pittsburgh, PA, 1994), p. 337.Google Scholar