Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T13:18:06.892Z Has data issue: false hasContentIssue false

Asparagine–serine–serine peptide regulates enamel remineralization in vitro

Published online by Cambridge University Press:  22 October 2013

Hsiu-Ying Chung*
Affiliation:
Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan; and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan
Cheng-Che Li
Affiliation:
Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A highly biocompatible peptide, triplet repeats of asparagine–serine–serine (3NSS) regulates mineral deposition for the reconstruction of erosive enamel. Healthy human enamel was demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva. The degrees of nanohardness recovery were 5.02% and 16.27% for the control group and enamel treated with the 3NSS peptide, respectively. Peptides assembling at enamel interrod attracted greater quantities of ions from the solution to form nanocrystalline hydroxyapatite minerals during the reconstruction of vacant gap. This resulted in a decrease in the surface roughness, and the acidic eroded pores were filled completely. Additionally, the newly deposited hydroxyapatites remineralized with the aid of the 3NSS peptide exhibited a smaller average crystalline size, which effectively inhibited plastic deformations. Treatment with the 3NSS peptide provided great improvements in nanohardness and elastic modulus.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aoba, T.: Solubility properties of human tooth mineral and pathogenesis of dental caries. Oral Dis. 10, 249 (2004).CrossRefGoogle ScholarPubMed
van Houte, J.: Role of microorganisms in caries etiology. J. Dent. Res. 73, 672 (1994).CrossRefGoogle ScholarPubMed
Dorozhkin, S.V. and Epple, M.: Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 41, 3130 (2002).3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Reynolds, E.C.: Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J. Dent. Res. 76, 1587 (1997).CrossRefGoogle ScholarPubMed
Iijima, Y., Cai, F., Shen, P., Walker, G., Reynolds, C., and Reynolds, E.C.: Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. Caries Res. 38, 551 (2004).CrossRefGoogle ScholarPubMed
Cross, K.J., Huq, N.L., Palamara, J.E., Perich, J.W., and Reynolds, E.C.: Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J. Biol. Chem. 280, 15362 (2005).CrossRefGoogle ScholarPubMed
Morgan, M.V., Adams, G.G., Bailey, D.L., Tsao, C.E., Fischman, S.L., and Reynolds, E.C.: The anticariogenic effect of sugar-free gum containing CPP-ACP nanocomplexes on approximal caries determined using digital bitewing radiography. Caries Res. 42, 171 (2008).CrossRefGoogle ScholarPubMed
Hannig, M. and Hannig, C.: Nanomaterials in preventive dentistry. Nat. Nanotechnol. 5, 565 (2010).CrossRefGoogle ScholarPubMed
Cai, Y.R. and Tang, R.K.: Calcium phosphate nanoparticles in biomineralization and biomaterials. J. Mater. Chem. 18, 3775 (2008).CrossRefGoogle Scholar
Tung, M.S. and Eichmiller, F.C.: Amorphous calcium phosphates for tooth mineralization. Comp. Cont. Educ. Dent. 25, 9 (2004).Google ScholarPubMed
Kirkham, J., Firth, A., Vernals, D., Boden, N., Robinson, C., Shore, R.C., Brookes, S.J., and Aggeli, A.: Self-assembling peptide scaffolds promote enamel remineralization. J. Dent. Res. 86, 426 (2007).CrossRefGoogle ScholarPubMed
Segman-Magidovich, S., Grisaru, H., Gitli, T., Levi-Kalisman, Y., and Rapaport, H.: Matrices of acidic beta-sheet peptides as templates for calcium phosphate mineralization. Adv. Mater. 20, 2156 (2008).CrossRefGoogle Scholar
George, A., Bannon, L., Sabsay, B., Dillon, J.W., Malone, J., Veis, A., Jenkins, N.A., Debra, J.G., and Neal, G.C.: The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process. J. Biol. Chem. 271, 32869 (1996).CrossRefGoogle ScholarPubMed
Hsu, C.C., Chung, H.Y., Yang, J.M., Shi, W., and Wu, B.: Influence of 8DSS peptide on nano-mechanical behavior of human enamel. J. Dent. Res. 90, 88 (2011).CrossRefGoogle ScholarPubMed
Chung, H.Y., Li, C.C., and Hsu, C.C.: Characterization of the effects of 3DSS peptide on remineralized enamel in artificial saliva. J. Mech. Behav. Biomed. Mater. 6, 74 (2012).CrossRefGoogle ScholarPubMed
Norcy, E.L., Kwak, S.Y., Wiedemann-Bidlack, F.B., Beniash, E., Yamakoshi, Y., Simmer, J.P., and Margolis, H.C.: Leucine-rich amelogenin peptides regulate mineralization in vitro. J. Dent. Res. 90, 1091 (2011).CrossRefGoogle ScholarPubMed
Holland, R.I.: Corrosion testing by potentiodynamic polarization in various electrolytes. Dent. Mater. 8, 241 (1992).CrossRefGoogle ScholarPubMed
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Zhou, J. and Hsiung, L.L.: Biomolecular origin of the rate-dependent deformation of prismatic enamel. Appl. Phys. Lett. 89, 51904 (2006).CrossRefGoogle Scholar
Moriguchi, T., Yano, K., Nakagawa, S., and Kaji, F.: Elucidation of adsorption mechanism of bone-staining agent alizarin red S on hydroxyapatite by FT-IR microspectroscopy. J. Colloid Interface Sci. 260, 19 (2003).CrossRefGoogle ScholarPubMed
Reyes-Gasga, J., García-García, R., Arellano-Jiménez, M.J., Sanchez-Pastenes, E., Tiznado-Orozco, G.E., Gil-Chavarria, I.M., and Gómez-Gasga, G.: Structural and thermal behaviour of human tooth and three synthetic hydroxyapatites from 20 to 600 °C. J. Phys. D. Appl. Phys. 41, 225407 (2008).CrossRefGoogle Scholar
Toworfe, G.K., Composto, R.J., Shapiro, I.M., and Ducheyne, P.: Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 27, 631 (2006).CrossRefGoogle ScholarPubMed
Fong, H., Sarikaya, M., White, S.N., and Snead, M.L.: Nano-mechanical properties profiles across dentin-enamel junction of human incisor teeth. Mater. Sci. Eng., C 7, 119 (2000).CrossRefGoogle Scholar
Cuy, J.L., Mann, A.B., Livi, K.J., Teaford, M.F., and Weihs, T.P.: Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 47, 281 (2002).CrossRefGoogle ScholarPubMed
Balooch, G., Marshall, G.W., Marshall, S.J., Warren, O.L, Asif, S.A.S., and Balooch, M.: Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J. Biomech. 37, 1223 (2004).CrossRefGoogle ScholarPubMed
Roy, S. and Basu, B.: Mechanical and tribological characterization of human tooth. Mater. Charact. 59, 747 (2008).CrossRefGoogle Scholar
Hsu, C.C., Chung, H.Y., Yang, J.M., Shi, W., and Wu, B.: Influences of ionic concentration on nanomechanical behaviors for remineralized enamel. J. Mech. Behav. Biomed. Mater. 4, 1982 (2011).CrossRefGoogle ScholarPubMed
Cury, J.A., Simões, G.S., Del Bel Cury, A.A., Gonçalves, N.C., and Tabchoury, C.P.M.: Effect of a calcium carbonate-based dentifrice on in situ enamel remineralization. Caries Res. 39, 255 (2005).CrossRefGoogle ScholarPubMed
Bertassoni, L.E., Habelitz, S., Marshall, S.J., and Marshall, G.W.: Mechanical recovery of dentin following remineralization in vitro: An indentation study. J. Biomech. 44, 176 (2011).CrossRefGoogle ScholarPubMed
Srinivasan, N., Kavitha, M., and Loganathan, S.C.: Comparison of the remineralization potential of CPP–ACP and CPP–ACP with 900ppm fluoride on eroded human enamel: An in situ study. Arch. Oral Biol. 55, 541 (2010).CrossRefGoogle Scholar