Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T23:37:59.576Z Has data issue: false hasContentIssue false

ARXPS studies of SiO2-SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001) surfaces

Published online by Cambridge University Press:  03 March 2011

B. Hornetz
Affiliation:
University of Karlsruhe, 76131 Karlsruhe, Germany
H-J. Michel
Affiliation:
Kernforschungszentrum Karlsruhe IMF I, Postfach 3640, 76021 Karlsruhe, Germany
J. Halbritter
Affiliation:
Kernforschungszentrum Karlsruhe IMF I, Postfach 3640, 76021 Karlsruhe, Germany
Get access

Abstract

The main puzzle in oxidation of hexagonal SiC is the slower rate of the Si-terminated surface as compared to the C-terminated surface, which is blamed on an unknown interface compound. ARXPS is a unique method to identify minor amounts of interface compounds, especially for smooth surfaces. Our ARXPS analysis of oxidized Si-(001) and C-(001) surfaces of 6H SiC reveals the interface oxide Si4C4−xO2 (x < 2), likely a reaction product of a peroxidic O2-bond to a SiC double layer. Si4C4−xO2 occurs in larger thickness (≃1 nm) at the slowly oxidizing Si-(001) surface, whereas the C-(001) surface shows smaller amounts, diminishing fast with oxidation above 1000 K. Evidence is presented that with increasing amount of Si4C4−xO2 the oxidation of SiC to SiO2 is reduced. ARXPS is consistent with a layer of SiO2 containing less than 3% Si4C4O4 being an oxidation product of Si4C4−xO2. At the surface of SiO2, graphite and some Si4C4O4 exist, aside from standard adsorbates.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nishino, S., Powell, J. A., and Will, H., Appl. Phys. Lett. 42, 460 (1983); Park, C. H., Cheoug, B-H., Lee, K-H., and Chang, K. J., Phys. Rev. B 49, 4485 (1994).CrossRefGoogle Scholar
2Stein, R. A. and Lanig, P., J. Cryst. Growth 131, 71 (1993); Stephani, D., Lanig, P., and Ziegler, G., patent DE 3603725A1 (1985).CrossRefGoogle Scholar
3Zheng, Z., Tressler, R. E., and Spear, K. E., J. Electrochem. Soc. 137, 854, 2812 (1990).CrossRefGoogle Scholar
4Tressler, R. E., MRS Bull. 58 (Sept. 1993); Munro, R. G. and Dapkunas, S. J., J. Res. Natl. Inst. Stand. Technol. 98, 607 (1993).Google Scholar
5Powers, J. M. and Somorjai, G. A., Surf. Sci. 244, 39 (1991).CrossRefGoogle Scholar
6Muhlhoff, L., Choyke, W. J., Bozack, M. J., and Yates, J. T., J. Appl. Phys. 60, 2842 (1986).CrossRefGoogle Scholar
7Powers, J. M., Wander, A., Rous, P. J., Van Hove, M. A., and Somorjai, G. A., Phys. Rev. B 44, 11, 159 (1991); Bermudez, V. M. and Kaplan, R., Phys. Rev. B 44, 1149 (1991).CrossRefGoogle Scholar
8Bermudez, V. M., J. Appl. Phys. 66, 6084 (1989).CrossRefGoogle Scholar
9Halbritter, J., J. Mater. Res. 3, 506 (1988).CrossRefGoogle Scholar
10Dohnke, K. O. and Stein, R. A. of Corporate Research and Development of Siemens AG (P.O. Box 3220, D 91050 Erlangen) supplied the SiC wafer and made the final oxidation.Google Scholar
11Schier, V., Michel, H-J., and Halbritter, J., Fresenius J. Anal. Chem. 346, 227 (1993); Hornetz, B., Michel, H-J., and Halbritter, J., Fresenius J. Anal. Chem. 349, 233 (1994).CrossRefGoogle Scholar
12Schelz, S. and Oelhafen, P., Surf. Sci. 279, 137 (1992).CrossRefGoogle Scholar
13Pampuch, R., Ptak, W., Jonas, S., and Stoch, J., Mater. Sci. Monogr. 6, 435 (1980).Google Scholar
14Li, J., Eveno, P., and Huntz, A. M., Werkstoffe und Korrosion 41, 716 (1990).CrossRefGoogle Scholar
15Morgan, P., Höfer, U., Wurth, W., and Umbach, E., Phys. Rev. B 39, 3720; B 40, 1130 (1989).CrossRefGoogle Scholar
16Suzuki, A., Ashida, H., Furul, N., Mameno, K., and Matsunami, H., Jpn. J. Appl. Phys. 21, 579 (1982).CrossRefGoogle Scholar
17Wang, P. S., Hsu, S. M., and Wittberg, T. N., J. Mater. Sci. 26, 1655 (1991).CrossRefGoogle Scholar
18Ogbuji, L. U. J. T., J. Am. Ceram. Soc. 75, 2995 (1992).CrossRefGoogle Scholar
19Wang, P. S., Malghan, S. G., Hsu, S. M., and Wittberg, T. N., J. Mater. Res. 8, 3168 (1993).CrossRefGoogle Scholar
20Stein, R., private communication.Google Scholar
21Schreck, Ph., Viy-Guterl, C., Ehrburger, P., and Lahaye, J., J. Mater. Sci. 27, 4243 (1992); Laffon, C., Flank, M., Lagerde, P., Laridjam, M., Hagege, R., Olry, P., Cotteret, J., Dixmier, J., Miquel, J. L., Hommel, H., and Legrand, A. P., J. Mater. Sci. 24, 1503 (1989).CrossRefGoogle Scholar
22Davis, R. F., J. Vac. Sci. Technol. A 11, 829 (1993); Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994).CrossRefGoogle Scholar