Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T01:18:37.432Z Has data issue: false hasContentIssue false

Application of clickable nanoporous silica surface for immobilization of ionic liquids

Published online by Cambridge University Press:  16 January 2012

Yeganeh Khaniani
Affiliation:
School of Chemistry, College of Science, University of Tehran, Tehran, Iran
Alireza Badiei*
Affiliation:
School of Chemistry, College of Science, University of Tehran, Tehran, Iran
Ghodsi Mohammadi Ziarani
Affiliation:
Department of Chemistry, Faculty of Science, Alzahra University, Tehran, Iran
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A clickable surface was prepared using nanoporous SBA-15 support. Methylimidazolium, an ionic liquid, was immobilized on this surface through the click reaction. Detailed characterization using nitrogen adsorption, elemental analysis, x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis showed that the ionic system was fixed inside the channels and the ordered porous structure remained stationary. Influence of this material on photoluminescence emission of 5-amino-4-hydroxy-7-sulfonaphthalene-2-sulfonate anion (H-acid) in aqueous solutions was evaluated. This click reaction product can be used effectively for H-acid removal from wastewater.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kolb, H.C., Finn, M.G., and Sharpless, K.B.: Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004 (2001).Google Scholar
2.Sinha, J., Sahoo, R., and Kumar, A.: Processable, regioregular, and “click”able monomer and polymers based on 3,4-propylenedioxythiophene with tunable solubility. Macromolecules 42, 2015 (2009).Google Scholar
3.Fleischmann, S., Komber, H., and Voit, B.: Diblock copolymers as scaffolds for efficient functionalization via click chemistry. Macromolecules 41, 5255 (2008).Google Scholar
4.Sun, J., Hu, J., Liu, G., Xiao, D., He, G., and Lu, R.: Efficient synthesis of well-defined amphiphilic cylindrical brushes polymer with high grafting density: Interfacial ‘‘click’’ chemistry approach. J. Polym. Sci., Part A: Polym. Chem. 49, 1282 (2011).Google Scholar
5.Gole, A. and Murphy, C.J.: Azide-derivatized gold nanorods: Functional materials for “click” chemistry. Langmuir 24, 266 (2008).Google Scholar
6.Haensch, C., Hoeppener, S., and Schubert, U.S.: Chemical surface reactions by click chemistry: Coumarin dye modification of 11-bromoundecyltrichlorosilane monolayers. Nanotechnology 19, 035703 (2008).Google Scholar
7.Ciampi, S., Böcking, T., Kilian, K.A., Harper, J.B., and Gooding, J.J.: Click chemistry in mesoporous materials: Functionalization of porous silicon rugate filters. Langmuir 24, 5888 (2008).CrossRefGoogle ScholarPubMed
8.Schlossbauer, A., Schaffert, D., Kecht, J., Wagner, E., and Bein, T.: Click chemistry for high-density biofunctionalization of mesoporous silica. J. Am. Chem. Soc. 130, 12558 (2008).Google Scholar
9.Gallant, N.D., Lavery, K.A., Amis, E.J., and Becker, M.L.: Universal gradient substrates for “click” biofunctionalization. Adv. Mater. 19, 965 (2007).CrossRefGoogle Scholar
10.Huang, L., Dolai, S., Raja, K., and Kruk, M.: “Click” grafting of high loading of polymers and monosaccharides on surface of ordered mesoporous silica. Langmuir 26, 2688 (2010).Google Scholar
11.McDonald, A.R., Dijkstra, H.P., Suijkerbuijk, B.M.J.M., van Klink, G.P.M., and Koten, G.V.: “Click” immobilization of organometallic pincer catalysts for C-C coupling reactions. Organometallics 28, 4689 (2009).CrossRefGoogle Scholar
12.Guan, B., Ciampi, S., Saux, G.L., Gaus, P.J.R.K., and Gooding, J.J.: Different functionalization of the internal and external surfaces in mesoporous materials for biosensing applications using “click” chemistry. Langmuir 27, 328 (2011).Google Scholar
13.Hagiwara, R. and Ito, Y.: Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J. Fluor. Chem. 105, 221 (2000).CrossRefGoogle Scholar
14.Gordon, C.M.: New developments in catalysis using ionic liquids. Appl. Catal. A 222, 101 (2001).Google Scholar
15.Sheldon, R.: Catalytic reactions in ionic liquids. Chem. Commun. 23, 2399 (2001).Google Scholar
16.Zhao, D., Wu, M., Kou, Y., and Min, E.: Ionic liquids: Applications in catalysis. Catal. Today 74, 157 (2002).CrossRefGoogle Scholar
17.Olivier-Bourbigou, H. and Magna, L.: Ionic liquids: Perspectives for organic and catalytic reactions. J. Mol. Catal. Chem. 182183, 419 (2002).Google Scholar
18.Welton, T.: Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev. 99, 2071 (1999).CrossRefGoogle ScholarPubMed
19.Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., and Rogers, R.D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156 (2001).Google Scholar
20.Gorlov, M. and Kloo, L.: Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Trans. 2655 (2008).Google Scholar
21.Kato, T., Kado, T., Tanaka, S., Okazaki, A., and Hayase, S.: Quasi-solid dye-sensitized solar cells containing nanoparticles modified with ionic liquid-type molecules. J. Electrochem. Soc. 153, A626 (2006).Google Scholar
22.Trewyn, B.G., Whitman, C.M., and Lin, V.S.Y.: Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett. 4, 2139 (2004).Google Scholar
23.Hunger, K.: Industrial Dyes: Chemistry, Properties, Applications, chapter 3, (Wiley-VCH, 2003), p. 119.Google Scholar
24.Kirk-Othmer, : Encyclopedia of Chemical Technology, 3rd ed. Vol. 15, (Wiley-VCH, 1981), p. 740.Google Scholar
25.Armarego, W.L.F. and Perrin, D.D.: Purification of Laboratory Chemicals, 4th ed. (Elsevier, 1996).Google Scholar
26.Barrett, E.P., Joyner, L.G., and Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).Google Scholar
27.Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., and Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024 (1998).Google Scholar
28.Javanbakht, M., Divsar, F., Badiei, A., Fatollahi, F., Khaniani, Y., Ganjali, M., Norouzi, P., Chaloosi, M., and Mohammadi Ziarani, G.: Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel. Electrochim. Acta. 54, 5381 (2009).Google Scholar
29.Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50–300 Angstrom pores. Science 279, 548 (1998).Google Scholar
30.Hamad, B., Alshebani, A., Pera-Titus, M., Wang, S., Torres, M., Albela, B., Bonneviot, L., Miachon, S., and Dalmon, J.A.: Synthesis and characterization of nanocomposite MCM-41 (‘LUS’) ceramic membranes. Microporous Mesoporous Mater. 115, 40 (2008).CrossRefGoogle Scholar
31.Jaroniec, C.P., Kruk, M., Jaroniec, M., and Sayari, A.: Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes. J. Phys. Chem. B 102, 5503 (1998).Google Scholar
32.Zhuravlev, L.T.: The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A 173, 1 (2000).CrossRefGoogle Scholar