Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T05:54:34.976Z Has data issue: false hasContentIssue false

Anticorrosion coating of the walls of metal pipes by digital growth of aluminum oxide

Published online by Cambridge University Press:  29 June 2016

Koji Sugioka
Affiliation:
Riken, The Institute of Physical and Chemical Research, Wako, Saitama, 351-01, Japan
Jia-Fa Fan
Affiliation:
Riken, The Institute of Physical and Chemical Research, Wako, Saitama, 351-01, Japan
Koichi Toyoda
Affiliation:
Riken, The Institute of Physical and Chemical Research, Wako, Saitama, 351-01, Japan
Hiromichi Waki
Affiliation:
Tokyo Denki University, Faculty of Engineering, 2-2, Kanda-nishi-cho, Chiyoda-ku, Tokyo, 101, Japan
Hiroshi Takai
Affiliation:
Tokyo Denki University, Faculty of Engineering, 2-2, Kanda-nishi-cho, Chiyoda-ku, Tokyo, 101, Japan
Get access

Abstract

The chemical stability of the surface of metals, such as aluminum and stainless steel (SUS304), exposed to acid solutions is remarkably improved by the digital growth of Al2O3 using the sequential surface chemical reaction of trimethylaluminum (TMA) and water vapor. Samples thus coated with Al2O3 thin films were not etched by 1 N HCl or 1 N H2SO4 completely, and no change in the surface morphology was observed by these immersion tests. By the quantitative verification of polarization measurement in 1 N HCl and 1 N H2SO4, the polarization resistance was estimated to be 1.4 × 101–5.18 × 103 times that of noncoated samples. Anticorrosion coating of SUS304 pipe walls was also demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goode, P. D. and Baumvol, I.J. R., Nucl. Instrum. Methods 189, 161 (1981).Google Scholar
2.Hubler, G. K. and Smidt, F. A., Nucl. Instrum. Methods B7/8, 151 (1985).Google Scholar
3.Doyle, B. L., Follstaedt, D. M., Picraux, S. T., Yost, F. G., Pope, L. E., and Knapp, J.A., Nucl. Instrum. Methods B7/8, 166 (1985).Google Scholar
4.Peide, Z., Xianghuai, L., Zhijie, W., Wei, T., and Shichang, Z., Nucl. Instrum. Methods B7/8, 195 (1985).Google Scholar
5.Cui, F.Z., Vredenberg, A.M., and Saris, F.W., Appl. Phys. Lett. 53, 2152 (1988).Google Scholar
6.Gnamuthu, D. S., Proc. of Conf. ASM'79 on Applications of Lasers in Materials Processing, 177 (1979).Google Scholar
7.Ogale, S.B., Polman, A., Quentin, F.O.P., Roorda, S., and Saris, F.W., Appl. Phys. Lett. 50, 138 (1987).Google Scholar
8.Ogale, S. B., Patil, P. P., Roorda, S., and Saris, F. W., Appl. Phys. Lett. 50, 1802 (1988).Google Scholar
9.Jeris, T. R., Nastasi, M., Zocco, T. G., and Martin, J. A., Appl. Phys. Lett. 53, 75 (1988).Google Scholar
10.Sugioka, K., Tashiro, H., Toyoda, K., Tamura, E., and Nagasaka, K., J. Mater. Res. 5, 265 (1990).Google Scholar
11.Sugioka, K., Tashiro, H., Murakami, H., Takai, H., and Toyoda, K., Jpn. J. Appl. Phys. 29, L1185 (1990).Google Scholar
12.Sugioka, K., Tashiro, H., Toyoda, K., Murakami, H., and Takai, H., J. Mater. Res. 5, 2835 (1990).Google Scholar
13.Sundgren, J.E., Thin Solid Films 63, 367 (1983).Google Scholar
14.Giacobbe, F. W., in Photon, Beam and Plasma Stimulated Chemical Processes at Surfaces, edited by Donnelly, V. M., Herman, I. P., and Hirose, M. (Mater. Res. Soc. Symp. Proc. 75, Pittsburgh, PA, 1987), p. 809.Google Scholar
15.Lince, J.R., J. Mater. Res. 5, 218 (1990).Google Scholar
16.Itzhak, D., Tuler, F. R., and Schieber, M., Thin Solid Films 93, 379 (1980).Google Scholar
17.Wahl, G., Schmaderer, F., and Thiede, W., Thin Solid Films 94, 257 (1982).Google Scholar
18.Cabrera, A. L., Kirner, J. F., and Pierantozzi, R., J. Mater. Res. 5, 74 (1990).Google Scholar
19.Graham, D. E. and Hale, T.E., The Carbide and Tool Journal May-June, 34 (1982).Google Scholar
20.Spitsyn, B. V., Bouilov, L. L., and Derjaguin, B. V., J. Cryst. Growth 52, 219 (1981).Google Scholar
21.Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L2183 (1982).Google Scholar
22.Lee, N.L., Fisher, G.B., and Schulz, R., J. Mater. Res. 3, 862 (1988).Google Scholar
23.Shapiro, A.H., Vacuum 13, 83 (1963).Google Scholar
24.Higashi, G.S. and Fleming, C.G., Appl. Phys. Lett. 55, 1963 (1989).Google Scholar
25.Fan, J.F., Sugioka, K., and Toyoda, K., Jpn. J. Appl. Phys. 30, L1139 (1991).Google Scholar
26.Solanki, R., Ritchie, W. H., and Collins, G. J., Appl. Phys. Lett. 43, 454 (1983).Google Scholar
27.Wagner, C. and Traund, W., Z. Electrochem. 44, 391 (1938).Google Scholar
28.Stern, M. and Geary, A. L., J. Electrochem. Soc. 104, 56 (1957).Google Scholar
29.Stern, M., Corrosion 14, 440t (1958).Google Scholar
30.Fan, J. F., Sugioka, K., and Toyoda, K., in Atomic Layer Growth and Processing, edited by Kuech, T. F., Dapkus, P. D., and Aoyagi, Y. (Mater. Res. Soc. Symp. Proc. 222, Pittsburgh, PA, 1991), p. 327.Google Scholar