Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T22:04:30.280Z Has data issue: false hasContentIssue false

Anomalous size effects in nanoporous materials induced by high surface energies

Published online by Cambridge University Press:  05 April 2019

Justin W. Wilkerson*
Affiliation:
J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Several experiments and molecular dynamics calculations have reported anomalous mechanical behaviors of nanoporous materials that may be attributed to capillary effects. For example, nanoporous gold exhibits a tension–compression asymmetry in yield strength with the material being stronger in compression than tension. In addition, some molecular dynamics calculations have reported a spontaneous collapse of pores in nanoporous gold with nanometer-sized ligaments. Despite these perplexing observations, there are few theoretical models capable of shedding light on such capillary phenomena, particularly under general stress states. Here, we utilize a physics-based model to explore the implications of high surface energies on the mechanical response of dislocation-starved nanoporous materials subject to general stress states. For low stress triaxialities, we report an anomalous size effect and an anomalous temperature-dependence of dislocation-starved nanoporous materials with sufficiently large surface energies. Additionally, we provide an analytic criterion for spontaneous pore collapse in nanoporous materials with nanometer-sized ligaments.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., and Abraham, F.F.: Size effects on the mechanical behavior of nanoporous au. Nano Lett. 6, 23792382 (2006).CrossRefGoogle ScholarPubMed
Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron au columns. Philos. Mag. 86, 55675579 (2006).CrossRefGoogle Scholar
Hodge, A., Biener, J., Hayes, J., Bythrow, P., Volkert, C., and Hamza, A.: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 13431349 (2007).CrossRefGoogle Scholar
Ashby, M.F. and Gibson, L.J.: Cellular Solids: Structure and Properties (Press Syndicate of the University of Cambridge, Cambridge, U.K., 1997); p. 183e231.Google Scholar
Volkert, C., Lilleodden, E., Kramer, D., and Weissmüller, J.: Approaching the theoretical strength in nanoporous au. Appl. Phys. Lett. 89, 061920 (2006).CrossRefGoogle Scholar
Briot, N.J., Kennerknecht, T., Eberl, C., and Balk, T.J.: Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing. Philos. Mag. 94, 847866 (2014).CrossRefGoogle Scholar
Dou, R. and Derby, B.: Deformation mechanisms in gold nanowires and nanoporous gold. Philos. Mag. 91, 10701083 (2011).CrossRefGoogle Scholar
Dou, R. and Derby, B.: A universal scaling law for the strength of metal micropillars and nanowires. Scr. Mater. 61, 524527 (2009).CrossRefGoogle Scholar
El-Awady, J.A.: Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6, 5926 (2015).CrossRefGoogle ScholarPubMed
McCue, I., Benn, E., Gaskey, B., and Erlebacher, J.: Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263286 (2016).CrossRefGoogle Scholar
Jin, H-J., Kurmanaeva, L., Schmauch, J., Rösner, H., Ivanisenko, Y., and Weissmüller, J.: Deforming nanoporous metal: Role of lattice coherency. Acta Mater. 57, 26652672 (2009).CrossRefGoogle Scholar
Liu, R. and Antoniou, A.: A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Mater. 61, 23902402 (2013).CrossRefGoogle Scholar
Wang, K., Hartig, C., Blankenburg, M., Müller, M., Günther, R., and Weissmüller, J.: Local flow stresses in interpenetrating-phase composites based on nanoporous gold—In situ diffraction. Scr. Mater. 127, 151155 (2017).CrossRefGoogle Scholar
Jin, H-J., Weissmüller, J., and Farkas, D.: Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts. MRS Bull. 43, 3542 (2018).CrossRefGoogle Scholar
Huber, N., Viswanath, R., Mameka, N., Markmann, J., and Weißmüller, J.: Scaling laws of nanoporous metals under uniaxial compression. Acta Mater. 67, 252265 (2014).CrossRefGoogle Scholar
Briot, N.J. and Balk, T.J.: Developing scaling relations for the yield strength of nanoporous gold. Philos. Mag. 95, 29552973 (2015).CrossRefGoogle Scholar
Mangipudi, K., Epler, E., and Volkert, C.: Topology-dependent scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 119, 115122 (2016).CrossRefGoogle Scholar
Roschning, B. and Huber, N.: Scaling laws of nanoporous gold under uniaxial compression: Effects of structural disorder on the solid fraction, elastic Poisson’s ratio, Young’s modulus and yield strength. J. Mech. Phys. Solids 92, 5571 (2016).CrossRefGoogle Scholar
Reina, C., Marian, J., and Ortiz, M.: Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals. Phys. Rev. B 84, 104117 (2011).CrossRefGoogle Scholar
Wilkerson, J.: On the micromechanics of void dynamics at extreme rates. Int. J. Plast. 95, 2142 (2017).CrossRefGoogle Scholar
Lubarda, V., Schneider, M., Kalantar, D., Remington, B., and Meyers, M.: Void growth by dislocation emission. Acta Mater. 52, 13971408 (2004).CrossRefGoogle Scholar
Belak, J.: On the nucleation and growth of voids at high strain-rates. J. Comput.-Aided Mater. Des. 5, 193206 (1998).CrossRefGoogle Scholar
Rudd, R.E. and Belak, J.F.: Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: An atomistic simulation. Comput. Mater. Sci. 24, 148153 (2002).CrossRefGoogle Scholar
Seppälä, E., Belak, J., and Rudd, R.: Effect of stress triaxiality on void growth in dynamic fracture of metals: A molecular dynamics study. Phys. Rev. B 69, 134101 (2004).CrossRefGoogle Scholar
Traiviratana, S., Bringa, E.M., Benson, D.J., and Meyers, M.A.: Void growth in metals: Atomistic calculations. Acta Mater. 56, 38743886 (2008).CrossRefGoogle Scholar
Meyers, M.A., Traiviratana, S., Lubarda, V., Benson, D.J., and Bringa, E.M.: The role of dislocations in the growth of nanosized voids in ductile failure of metals. JOM 61, 3541 (2009).CrossRefGoogle Scholar
Bringa, E.M., Traiviratana, S., and Meyers, M.A.: Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects. Acta Mater. 58, 44584477 (2010).CrossRefGoogle Scholar
Tang, Y., Bringa, E.M., Remington, B.A., and Meyers, M.A.: Growth and collapse of nanovoids in tantalum monocrystals. Acta Mater. 59, 13541372 (2011).CrossRefGoogle Scholar
Ariza, M., Romero, I., Ponga, M., and Ortiz, M.: HotQC simulation of nanovoid growth under tension in copper. Int. J. Fract. 174, 7585 (2012).CrossRefGoogle Scholar
Lubarda, V.A.: Emission of dislocations from nanovoids under combined loading. Int. J. Plast. 27, 181200 (2011).CrossRefGoogle Scholar
Wilkerson, J. and Ramesh, K.: A closed-form criterion for dislocation emission in nano-porous materials under arbitrary thermomechanical loading. J. Mech. Phys. Solids 86, 94116 (2016).CrossRefGoogle Scholar
Ye, X-L. and Jin, H-J.: Electrochemical control of creep in nanoporous gold. Appl. Phys. Lett. 103, 201912 (2013).CrossRefGoogle Scholar
Lührs, L., Zandersons, B., Huber, N., and Weissmüller, J.: Plastic Poisson’s ratio of nanoporous metals: A macroscopic signature of tension–compression asymmetry at the nanoscale. Nano Lett. 17, 62586266 (2017).CrossRefGoogle ScholarPubMed
Mameka, N., Markmann, J., and Weissmüller, J.: On the impact of capillarity for strength at the nanoscale. Nat. Commun. 8, 1976 (2017).CrossRefGoogle ScholarPubMed
Farkas, D., Caro, A., Bringa, E., and Crowson, D.: Mechanical response of nanoporous gold. Acta Mater. 61, 32493256 (2013).CrossRefGoogle Scholar
Crowson, D.A., Farkas, D., and Corcoran, S.G.: Geometric relaxation of nanoporous metals: The role of surface relaxation. Scr. Mater. 56, 919922 (2007).CrossRefGoogle Scholar
Ngô, B-N.D., Stukowski, A., Mameka, N., Markmann, J., Albe, K., and Weissmüller, J.: Anomalous compliance and early yielding of nanoporous gold. Acta Mater. 93, 144155 (2015).CrossRefGoogle Scholar
Weinberger, C.R. and Cai, W.: Plasticity of metal nanowires. J. Mater. Chem. 22, 32773292 (2012).CrossRefGoogle Scholar
Diao, J., Gall, K., and Dunn, M.L.: Yield strength asymmetry in metal nanowires. Nano Lett. 4, 18631867 (2004).CrossRefGoogle Scholar
Diao, J., Gall, K., Dunn, M.L., and Zimmerman, J.A.: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54, 643653 (2006).CrossRefGoogle Scholar
Peng, J., Jing, F., Li, D., and Wang, L.: Pressure and temperature dependence of shear modulus and yield strength for aluminum, copper, and tungsten under shock compression. J. Appl. Phys. 98, 013508 (2005).CrossRefGoogle Scholar
Wilkerson, J.: Multiscale mechanics of failure in extreme environments. Ph.D. thesis, Johns Hopkins University, Baltimore, MD, 2014.Google Scholar
Vitos, L., Ruban, A., Skriver, H.L., and Kollar, J.: The surface energy of metals. Surf. Sci. 411, 186202 (1998).CrossRefGoogle Scholar
Zhao, K., Fan, L., and Chen, C.: Multiaxial behavior of nanoporous single crystal copper: A molecular dynamics study. Acta Mech. Solida Sin. 22, 650656 (2009).CrossRefGoogle Scholar
Iskandarov, A.M., Dmitriev, S.V., and Umeno, Y.: Temperature effect on ideal shear strength of Al and Cu. Phys. Rev. B 84, 224118 (2011).CrossRefGoogle Scholar
Udin, H., Shaler, A., and Wulff, J.: The surface tension of solid copper. JOM 1, 186190 (1949).CrossRefGoogle Scholar
Buttner, F., Udin, H., and Wulff, J.: Surface tension of solid gold. JOM 3, 12091211 (1951).CrossRefGoogle Scholar
Diao, J., Gall, K., and Dunn, M.L.: Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656 (2003).CrossRefGoogle ScholarPubMed
Liang, W., Zhou, M., and Ke, F.: Shape memory effect in cu nanowires. Nano Lett. 5, 20392043 (2005).CrossRefGoogle ScholarPubMed
Crowson, D.A., Farkas, D., and Corcoran, S.G.: Mechanical stability of nanoporous metals with small ligament sizes. Scr. Mater. 61, 497499 (2009).CrossRefGoogle Scholar
Parida, S., Kramer, D., Volkert, C., Rösner, H., Erlebacher, J., and Weissmüller, J.: Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett. 97, 035504 (2006).CrossRefGoogle ScholarPubMed
Rice, J.R. and Thomson, R.: Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 7397 (1974).CrossRefGoogle Scholar
Dundurs, J. and Mura, T.: Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Solids 12, 177189 (1964).CrossRefGoogle Scholar
Lubarda, V.A.: Image force on a straight dislocation emitted from a cylindrical void. Int. J. Solids Struct. 48, 648660 (2011).CrossRefGoogle Scholar