Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T00:13:57.524Z Has data issue: false hasContentIssue false

Anomalous electrical behavior of partially carbonized polyacrylonitrile fibers

Published online by Cambridge University Press:  03 March 2011

Bor Z. Jang*
Affiliation:
Materials Engineering Program, 201 Ross Hall, Auburn University, Auburn, Alabama 36849
Liren Zhao
Affiliation:
Materials Engineering Program, 201 Ross Hall, Auburn University, Auburn, Alabama 36849
*
a)Author to whom all correspondence should be addressed.
Get access

Abstract

Partially carbonized polyacrylonitrile fibers were observed to undergo a resistivity change of 2 to 4 orders of magnitude at a transition temperature typically in the range of 98 °C to 200 °C. The current-voltage curves exhibited an initial supercurrent-like increase, followed by a rapid drop to a high resistance state, and then a rise in current again at a later stage. These phenomena cannot be interpreted by existing theories on switching in inorganic amorphous semiconductors. They are explainable if the microstructure of the pyrolyzed fiber is viewed as comprising nanometer-scale superconducting phases interspersed with semiconducting phases, much like a large number of Josephson junctions connected in series.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Donnet, J. B. and Bansal, R. C., Carbon Fibers (Marcel Dekker, Inc., New York and Basel, 1990); Gupta, A.K., Paliwal, D. K., and Bajal, P., J. Macromolec. Sci. C31(1), 189 (1991).Google Scholar
2Jenkins, G. M. and Kawmura, K., Polymeric Carbon (Cambridge University Press, Cambridge, U.K., 1976).Google Scholar
3Ovshinsky, S. R., Phys. Rev. Lett. 21, 14501455 (1970).Google Scholar
4Mott, N. F. and Davis, E. A., Electron Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1971).Google Scholar
5Allison, D., Dawe, V. R., and Robson, P.N., J. Non-Cryst. Solids 810, 563568 (1972).Google Scholar
6Mott, N. F., Contemp. Phys. 10, 125131 (1969); Philos. Mag. 32, 159164 (1975).Google Scholar
7Antonowicz, K., Jesmansowicz, A., and Wieczorek, J., Carbon 10, 8184 (1972); 11, 15 (1973).Google Scholar
8Kulik, I. O. and Yanson, I. K., The Josephson Effect in Superconductive Tunneling Structures (Israel Program for Sci. Translations, Jerusalem, 1972), pp. 130144; Roy, D. K., Quantum Mechanical Tunneling and Its Applications (World Scientific Press, Singapore and Philadelphia, 1986), pp. 129169.Google Scholar
9Kivelson, S. and Chapman, O. L., Phys. Rev. B 28, 72367243(1983).Google Scholar
10Kimura, M., Kawabe, H., Kakajima, A., Nishikawa, K., and Aono, S., Bull. Chem. Soc. 61, 42394252 (1988); J. Chem. Phys. 85, 30903102 (1986).Google Scholar
11Hu, C., J. Phys. : Conden. Matter 2, 1000310009 (1990); J. Chem. Phys. 98, 76217624 (1993).Google Scholar
12Tachibana, A., Inoue, T., and Yamabe, T., Int. J. Quantum Chem. 30, 575579 (1986); Phys Rev. A 35, 1825 (1987); Synth. Metals 19, 99111 (1987); Chem. Phys. Lett. 112, 279282(1984).Google Scholar
13Little, W. A., Phys. Rev. A 134, 14161424 (1964); Davis, D., Gutfreud, H., and Little, W.A., Phys. Rev. B 13, 47664779(1976).Google Scholar
14Ginsburg, V. L. and Kirzhnits, D. A., Soviet Phys., JETP 19, 269271 (1964); Phys. Lett. 13, 101102 (1964); Ginzburg, V.L., Contemp. Phys. 9, 355374 (1968); Soviet Phys. JETP 20, 15491550 (1965).Google Scholar
15Warren, B. E. and Bodenstein, P., Acta Crystallogr. 20, 602605 (1966).Google Scholar
16Antonowicz, K., Nature 247, 358360 (1973).Google Scholar
17Honda, H., paper presented at the 3rd Biennial Carbon Conf., 159164 (1957).Google Scholar