Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T06:22:24.834Z Has data issue: false hasContentIssue false

Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity

Published online by Cambridge University Press:  05 January 2017

Yan Liu
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Dong Su
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Yanzong Zhang*
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Lilin Wang
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Gang Yang
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Fei Shen
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Shihuai Deng
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Xiaohong Zhang
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Shirong Zhang
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

TiO2 nanotubes have been demonstrated with promising future in photoelectrocatalytic (PEC)_ applications and deposition of Pt nanoparticles on TiO2 has been widely used to enhance their PEC activities. However, those Pt nanoparticles are normally randomly deposited on the surface of TiO2 nanotubes. Selective deposition of Pt nanoparticles is important to achieve better charge separation. In this study, we reported an electrochemical activation step to prepare TiO2 nanotubes deposited with Pt nanoparticles on their open ends. The “activation step” played a key role in achieving a clean surface of the TiO2 nanotubes, thus ensuring the uniform growth of Pt nanoparticles and efficient photogenerated electrons transportation. The Pt-A-TiO2 films have photocatalytic activities in hydrogen generation and methyl orange degradation with a high hydrogen generation rate of 0.74 mL/h/cm2, three times that of the pure TiO2 nanotubes (0.24 mL/h/cm2). Thus, this study demonstrated an effective method for improving the performance of Pt/TiO2 photocatalyst.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Xiaobo Chen

References

REFERENCES

Liu, G., Yang, H.G., Pan, J., Yang, Y.Q., Lu, G.Q., and Cheng, H.M.: Titanium dioxide crystals with tailored facets. Chem. Rev. 114(19), 9559 (2014).Google Scholar
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D.W.: Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 114(19), 9919 (2014).Google Scholar
Liu, L. and Chen, X.: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114(19), 9890 (2014).Google Scholar
Chen, X., Liu, L., and Huang, F.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44(7), 1861 (2015).Google Scholar
Sinhamahapatra, A., Jeon, J.P., and Yu, J.S.: A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8(12), 3539 (2015).Google Scholar
Dahl, M., Liu, Y., and Yin, Y.: Composite titanium dioxide nanomaterials. Chem. Rev. 114(19), 9853 (2014).Google Scholar
Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C.: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114(19), 9987 (2014).Google Scholar
Lee, K., Mazare, A., and Schmuki, P.: One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 114(19), 9385 (2014).Google Scholar
Shin, S.W., Lee, J.Y., Ahn, K.S., Kang, S.H., and Kim, J.H.: Visible light absorbing TiO2 nanotube arrays by sulfur treatment for photoelectrochemical water splitting. J. Phys. Chem. C 119(24), 13375 (2015).Google Scholar
Xue, Y., Sun, Y., Wang, G., Yan, K., and Zhao, J.: Effect of NH4F concentration and controlled-charge consumption on the photocatalytic hydrogen generation of TiO2 nanotube arrays. Electrochim. Acta 155(10), 312 (2015).Google Scholar
Subramanian, V.R., Sarker, S., Yu, B., Kar, A., Sun, X., and Dey, S.K.: TiO2 nanotubes and its composites: Photocatalytic and other photo-driven applications. J. Mater. Res. 28(3), 280 (2013).Google Scholar
Xiao, F.X., Hung, S.F., Miao, J., Wang, H.Y., Yang, H., and Liu, B.: Metal-cluster-decorated TiO2 nanotube arrays: A composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. Small 11(5), 554 (2015).Google Scholar
Macak, J.M., Zlamal, M., Krysa, J., and Schmuki, P.: Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3(2), 300 (2007).Google Scholar
Chiarello, G.L., Zuliani, A., Ceresoli, D., Martinazzo, R., and Selli, E.: Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production. ACS Catal. 6(2), 1345 (2016).Google Scholar
Regonini, D., Groff, A., Sorarù, G.D., and Clemens, F.J.: Photoelectrochemical study of anodized TiO2 nanotubes prepared using low and high H2O contents. Electrochim. Acta 186(20), 101 (2015).CrossRefGoogle Scholar
Wang, D., Yu, B., Wang, C., Zhou, F., and Liu, W.: A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv. Mater. 21(19), 1964 (2009).Google Scholar
Wang, D., Liu, Y., Yu, B., Zhou, F., and Liu, W.: TiO2 nanotubes with tunable morphology, diameter, and length: Synthesis and photo-electrical/catalytic performance. Chem. Mater. 21(7), 1198 (2009).Google Scholar
Ghicov, A. and Schmuki, P.: Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MO x structures. Chem. Commun. 2009, 2791 (2009).Google Scholar
Wang, J. and Lin, Z.: Anodic formation of ordered TiO2 nanotube arrays: Effects of electrolyte temperature and anodization potential. J. Phys. Chem. C 113(10), 4026 (2009).Google Scholar
Qi, L., Yin, Z., Zhang, S., Ouyang, Q., Li, C., and Chen, Y.: The increased interface charge transfer in dye-sensitized solar cells based on well-ordered TiO2 nanotube arrays with different lengths. J. Mater. Res. 29(6), 745 (2014).Google Scholar
Karthik, S., Gopal, K.M., Haripriya, E.P., Sorachon, Y., Maggie, P., Oomman, K.V., and Craig, A.G.: Highly-ordered TiO2 nanotube arrays up to 220 µm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18(6), 065707 (2007).Google Scholar
Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., Varghese, O.K., Mor, G.K., Latempa, T.A., Fitzgerald, A., and Grimes, C.A.: Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 110(33), 16179 (2006).Google Scholar
Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A., and Grimes, C.A.: TiO2 nanotube arrays of 1000 μm length by anodization of titanium Foil: Phenol red diffusion. J. Phys. Chem. C 111(41), 14992 (2007).Google Scholar
Albu, S.P., Ghicov, A., Macak, J.M., and Schmuki, P.: 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Status Solidi RRL 1(2), R65 (2007).Google Scholar
Roy, P., Berger, S., and Schmuki, P.: TiO2 nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 50(13), 2904 (2011).Google Scholar
Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891 (2007).Google Scholar
Luan, X., Guan, D., and Wang, Y.: Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C 116(27), 14257 (2012).Google Scholar
Nishanthi, S.T., Sundarakannan, B., Subramanian, E., and Pathinettam Padiyan, D.: Enhancement in hydrogen generation using bamboo like TiO2 nanotubes fabricated by a modified two-step anodization technique. Renewable Energy 77, 300 (2015).Google Scholar
Chen, B. and Lu, K.: Hierarchically branched titania nanotubes with tailored diameters and branch numbers. Langmuir 28(5), 2937 (2012).Google Scholar
Guan, D. and Wang, Y.: Synthesis and growth mechanism of multilayer TiO2 nanotube arrays. Nanoscale 4(9), 2968 (2012).Google Scholar
Li, H., Zheng, L., Shu, S., Cheng, H., and Li, Y.Y.: Morphology control of anodic TiO2 nanomaterials via cold work pretreatment of Ti foils. J. Electrochem. Soc. 158(10), C346 (2011).Google Scholar
Kim, D., Ghicov, A., Albu, S.P., and Schmuki, P.: Bamboo-type TiO2 Nanotubes: Improved conversion efficiency in dye-sensitized solar cells. J. Am. Chem. Soc. 130(49), 16454 (2008).CrossRefGoogle ScholarPubMed
Albu, S.P., Kim, D., and Schmuki, P.: Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew. Chem. 120(10), 1942 (2008).Google Scholar
Li, H., Cheng, J.W., Shu, S., Zhang, J., Zheng, L., Tsang, C.K., Cheng, H., Liang, F., Lee, S.T., and Li, Y.Y.: Selective removal of the outer shells of anodic TiO2 nanotubes. Small 9(1), 37 (2013).Google Scholar
Kim, J.Y., Zhu, K., Neale, N.R., and Frank, A.J.: Transparent TiO2 nanotube array photoelectrodes prepared via two-step anodization. Nano Convergence 1(1), 1 (2014).Google Scholar
Momeni, M.M. and Hosseini, M.G.: Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anodization and treated under UV light irradiation. Nanochem. Res. 1(1), 9 (2016).Google Scholar
Wu, H., Li, D., Zhu, X., Yang, C., Liu, D., Chen, X., Song, Y., and Lu, L.: High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116(10), 129 (2014).Google Scholar
Yu, D., Zhu, X., Xu, Z., Zhong, X., Gui, Q., Song, Y., Zhang, S., Chen, X., and Li, D.: Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl. Mater. Interfaces 6(11), 8001 (2014).CrossRefGoogle ScholarPubMed
Nguyen, N.T., Altomare, M., Yoo, J.E., Taccardi, N., and Schmuki, P.: Noble metals on anodic TiO2 nanotube mouths: Thermal dewetting of minimal Pt Co-catalyst loading leads to significantly enhanced photocatalytic H2 generation. Adv. Energy Mater. 6(2), 1501926 (2016).CrossRefGoogle Scholar
Bumajdad, A. and Madkour, M.: Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Phys. Chem. Chem. Phy. 16(16), 7146 (2014).Google Scholar
Nguyen, N.T., Altomare, M., Yoo, J., and Schmuki, P.: Efficient photocatalytic H2 evolution: Controlled dewetting–dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays. Adv. Mater. 27(20), 3208 (2015).Google Scholar
Su, R., Tiruvalam, R., Logsdail, A.J., He, Q., Downing, C.A., Jensen, M.T., Dimitratos, N., Kesavan, L., Wells, P.P., Bechstein, R., Jensen, H.H., Wendt, S., Catlow, C.R.A., Kiely, C.J., Hutchings, G.J., and Besenbacher, F.: Designer titania-supported Au–Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8(4), 3490 (2014).Google Scholar
Nguyen, N.T., Yoo, J., Altomare, M., and Schmuki, P.: “Suspended” Pt nanoparticles over TiO2 nanotubes for enhanced photocatalytic H2 evolution. Chem. Commun. 50(68), 9653 (2014).CrossRefGoogle ScholarPubMed
Yan, Y., Chen, T., Zou, Y., and Wang, Y.: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31(10), 1383 (2016).Google Scholar
Li, S., Tao, Q., Li, D., and Zhang, Q.: Controlled anisotropic growth of Ag nanoparticles on oil-decorated TiO2 films with photocatalytic reduction method. J. Mater. Res. 29(21), 2497 (2014).Google Scholar
Antony, R.P., Mathews, T., Ramesh, C., Murugesan, N., Dasgupta, A., Dhara, S., Dash, S., and Tyagi, A.: Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization. Int. J. Hydrogen Energy 37(10), 8268 (2012).CrossRefGoogle Scholar
Lai, Y., Gong, J., and Lin, C.: Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting. Int. J. Hydrogen Energy 37(8), 6438 (2012).Google Scholar
Liu, Y., Mu, K., Yang, G., Peng, H., Shen, F., Wang, L., Deng, S., Zhang, X., and Zhang, Y.: Fabrication of a coral/double-wall TiO2 nanotube array film electrode with higher photoelectrocatalytic activity under sunlight. New J. Chem. 39(5), 3923 (2015).CrossRefGoogle Scholar
Altomare, M., Pozzi, M., Allieta, M., Bettini, L.G., and Selli, E.: H2 and O2 photocatalytic production on TiO2 nanotube arrays: Effect of the anodization time on structural features and photoactivity. Appl. Catal., B 136–137(5), 81 (2013).Google Scholar
Li, H., Chen, Z., Tsang, C.K., Li, Z., Ran, X., Lee, C., Nie, B., Zheng, L., Hung, T., Lu, J., Pan, B., and Li, Y.Y.: Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J. Mater. Chem. A 2(1), 229 (2014).Google Scholar
Chen, X., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746 (2011).Google Scholar
Xia, T., Li, N., Zhang, Y., Kruger, M.B., Murowchick, J., Selloni, A., and Chen, X.: Directional heat dissipation across the interface in anatase-rutile nanocomposites. ACS Appl. Mater. Interfaces 5(20), 9883 (2013).CrossRefGoogle ScholarPubMed
Zhang, Y., Harris, C.X., Wallenmeyer, P., Murowchick, J., and Chen, X.: Asymmetric lattice vibrational characteristics of rutile TiO2 as revealed by laser power dependent Raman spectroscopy. J. Phys. Chem. C 117(45), 24015 (2013).Google Scholar
Mun, K.S., Alvarez, S.D., Choi, W.Y., and Sailor, M.J.: A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano. 4(4), 2070 (2010).Google Scholar
Liang, F., Kelly, T.L., Luo, L-b., Li, H., Sailor, M.J., and Li, Y.Y.: Self-cleaning organic vapor sensor based on a nanoporous TiO2 interferometer. ACS Appl. Mater. Interfaces 4(8), 4177 (2012).Google Scholar
Zheng, L., Cheng, H., Liang, F., Shu, S., Tsang, C.K., Li, H., Lee, S-T., and Li, Y.Y.: Porous TiO2 photonic band gap materials by anodization. J. Phys. Chem. C 116(9), 5509 (2012).Google Scholar
Yu, J., Qi, L., and Jaroniec, M.: Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 114(30), 13118 (2010).Google Scholar
Zhang, F., Chen, J., Zhang, X., Gao, W., Jin, R., Guan, N., and Li, Y.: Synthesis of titania-supported platinum catalyst: The effect of pH on morphology control and valence state during photodeposition. Langmuir 20(21), 9329 (2004).Google Scholar
Chen, X. and Burda, C.: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130(15), 5018 (2008).Google Scholar
Romero-Gómez, P., Rico, V., Borrás, A., Barranco, A., Espinós, J.P., Cotrino, J., and González-Elipe, A.R.: Chemical state of nitrogen and visible surface and Schottky barrier driven photoactivities of N-doped TiO2 thin films. J. Phys. Chem. C 113(30), 13341 (2009).Google Scholar
Ismail, A.A. and Bahnemann, D.W.: Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid. J. Phys. Chem. C 115(13), 5784 (2011).Google Scholar
Supplementary material: File

Liu supplementary material

Liu supplementary material

Download Liu supplementary material(File)
File 1.3 MB