Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T06:26:22.371Z Has data issue: false hasContentIssue false

Annealing-induced Changes in the Electronic and Structural Properties of ZnTe Substrates

Published online by Cambridge University Press:  31 January 2011

J. A. Garcia
Affiliation:
Departamento de Física Aplicada II, Facultad de Ciencias, Universidad del País Vasco, Lejona (Vizcaya) Spain
A. Remón
Affiliation:
Departamento de Física Aplicada II, Facultad de Ciencias, Universidad del País Vasco, Lejona (Vizcaya) Spain
V. Munñz
Affiliation:
Departamento de Física Aplicada and Instituto de Ciencia de Materiales de la Universitat de València (ICMUV), c/Doctor Moliner No. 50, E-46100 Burjassot (València), Spain
R. Triboulet
Affiliation:
Centre National de la Recherche Scientifique, Laboratoire de Physique des Solides de Bellevue (LPSB/CNRS), 1 Place Aristide Briand, F-92195, Meudon, France
Get access

Abstract

The aim of this study is to demonstrate that the electronic and structural properties of II–VI substrates, here ZnTe, can be dramatically affected by thermal heating at temperatures in the range of those typically used in the epitaxial metalorganic chemical vapor deposition processes. Photoluminescence response shows that annealing at these temperatures produces a reduction of the sample crystalline quality, decreasing the free exciton emission relative to the deep level related one. Some factors, like the change in the charge and stress state of dislocations, Cu diffusion, and oxygen incorporation, could be responsible for changes in the substrate properties, which can produce stresses and contamination in the deposited sample.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 3 (1994).Google Scholar
2.Nurmikko, A.V. and Gunshor, R.L., Solid State Commun. 92, 113 (1994).Google Scholar
3.Ogawa, H., Irfan, G.S., Nakayama, H., Nishio, M., and Yoshida, A., Jpn. J. Appl. Phys. 33, L980, (1994).CrossRefGoogle Scholar
4.Kuhn, W.S., Lusson, A., Qu'Hen, B., Grattepain, C., Dumont, H., Gorochov, O., Bauer, S., Wolf, K., Worz, M., Reisinger, T., Rosenauer, A., Wagner, H.P., Stanzl, H.P., and Gebhardt, W., Prog. Cryst. Growth Charact. Mater. 31, 119 (1995).Google Scholar
5.Ekawa, M. and Taguchi, T., Jpn. J. Appl. Phys. 28, L1341 (1989).CrossRefGoogle Scholar
6.Ogawa, H. and Nishio, M., J. Appl. Phys. 66, 3919 (1989).Google Scholar
7.Fernandez, P., García, A., Remón, A., Piqueras, J., Muñoz, V., and Triboulet, R., Semicond. Sci. Technol. 13, 410 (1998).CrossRefGoogle Scholar
8.García, J.A., Remón, A., Muñoz, V., and Triboulet, R., J. Cryst. Growth 191, 685 (1998).Google Scholar
9.Naumov, A., Wolf, K., Reisinger, T., Stanzl, H., and Gebhardt, W., J. Appl. Phys. 73, 2581 (1993).Google Scholar
10.García, J.A., Remón, A., Muñoz, V., and Triboulet, R., Jpn. J. Appl. Phys. 38, 5123 (1999).Google Scholar
11.Magnea, N., Molva, E., and Bensahel, D., Phys. Rev. B 22, 2983 (1980).CrossRefGoogle Scholar
12.Biao, Y., Azoulay, M., George, M.A., Burger, A., Collins, W.E., Silberman, E., Su, C.H., Voltz, M.E., Szofran, F.R., and Gillies, D.C., J. Cryst. Growth 138, 219 (1994).CrossRefGoogle Scholar
13.Dietz, R.E., Thomas, D.G., and Hopfield, J.J., Phys. Rev. Lett. 8, 391 (1962).CrossRefGoogle Scholar
14.Ekawa, M., Kawakami, Y., Taguchi, T., and Hiraki, A., J. Cryst. Growth 93, 667 (1988).Google Scholar