Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T14:49:44.719Z Has data issue: false hasContentIssue false

Annealing induced interdiffusion and crystallization in sputtered amorphous Si/Ge multilayers

Published online by Cambridge University Press:  31 January 2011

Zs. Czigány
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, H-1325, Budapest, P.O. Box 76, Hungary
G. Radnóczi
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, H-1325, Budapest, P.O. Box 76, Hungary
K. Järrendahl
Affiliation:
Department of Physics, Linköping University, S-581 83, Linköping, Sweden
J-E. Sundgren
Affiliation:
Department of Physics, Linköping University, S-581 83, Linköping, Sweden
Get access

Abstract

The intermixing and crystallization of amorphous Si/Ge multilayers (with individual layer thickness between 1.5 and 20 nm) and SiGe alloys produced by dc magnetron sputtering have been studied by cross-sectional transmission electron microscopy and x-ray diffraction. Measurement of the crystallization temperature as a function of the Si content showed that multilayers and alloys with equal composition crystallized at the same temperature. This implies that intermixing precedes crystallization in the multilayers. Close to the crystallization temperature, formation of Kirkendall voids was observed in the short-period Si/Ge multilayers. These voids were found at positions corresponding to the original Si layers, indicating that Si diffuses faster in amorphous Ge than Ge in amorphous Si. The Ge layers in short-period Si/Ge multilayers retained their amorphous state to much higher temperatures than thick amorphous Ge layers. This is shown to be due to inhibition of nucleation by the presence of the layer interfaces. A lower estimate for the Si diffusion constant in crystalline Ge is also determined.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Paul, W., Chen, J. H., Liu, E. Z., Wetsel, A. E., and Wickboldt, P., J. Non-Cryst. Solids 164–166, 1 (1993).CrossRefGoogle Scholar
2.Chu, V., Fang, M., and Drevillon, B., J. Appl. Phys. 69 (1), 1318 (1991).CrossRefGoogle Scholar
3.Li, Y. M., An, I., Nguyen, H. V., Wronski, C. R., and Collins, R. W., Phys. Rev. Lett. 68, 2814 (1992).CrossRefGoogle Scholar
4.Abeles, B., Tiedje, T., Liang, K. S., Deckman, H. W., Stasiewski, H. C., Scanlon, J. C., and Eisenberger, P. M., J. Non-Cryst. Solids 66, 351 (1984).CrossRefGoogle Scholar
5.Wallenberg, L. R., Hultman, L., Jonsson-Järrendahl, K., Johansson, P., and Birch, J., Micron and Microscopica Acta 22, 189 (1991).CrossRefGoogle Scholar
6.Järrendahl, K., Birch, J., Hultman, L., Wallenberg, R. L., Radnóczi, G., Arwin, H., and Sundgren, J-E., in Amorphous Silicon Technology—1992, edited by Thompson, M. J., Hamakawa, Y., LeComber, P. G., Madan, A., and Schiff, E. A. (Mater. Res. Soc. Symp. Proc. 258, Pittsburgh, PA, 1992), p. 571.Google Scholar
7.Järrendahl, K., Ivanov, I., Sundgren, J-E., Radnóczi, G., Zs. Czigány, and Greene, J. E., J. Mater. Res. 12, 1806 (1997).CrossRefGoogle Scholar
8.McMarr, P. J. and Blanco, J. R., Appl. Opt. 27, 4265 (1988).CrossRefGoogle Scholar
9.Prokes, S. M. and Spaepen, F., Appl. Phys. Lett. 47, 243 (1985).CrossRefGoogle Scholar
10.Kumar, S. and Trodahl, H. J., J. Appl. Phys. 70 (6), 3088 (1991).CrossRefGoogle Scholar
11.Kumar, S. and Bittar, A., Solid State Commun. 81 (5), 391 (1992).CrossRefGoogle Scholar
12.Kumar, S. and Trodahl, H. J., J. Appl. Phys. 70 (1), 508 (1991).CrossRefGoogle Scholar
13.Jian, L., Hong, Q. Z., Vizkelethy, G., Mayer, J. W., Cozzolino, C., Xia, W., Zho, B., Hsu, S. N., Lau, S. S., Hollander, B., Butz, R., and Mantl, S., Nucl. Instrum. Methods B59–B60, pt. 2, 989 (1991).CrossRefGoogle Scholar
14.Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987).CrossRefGoogle Scholar
15.Håkansson, G., Birch, J., Hultman, L., Ivanov, I. P., Sundgren, J. E., and Wallenberg, R., J. Cryst. Growth 121, 399 (1992).CrossRefGoogle Scholar
16.Barna, Á., in Specimen Preparation for Transmission Electron Microscopy of Materials III, edited by Anderson, R., Tracy, B., and Bravman, J. (Mater. Res. Soc. Symp. Proc. 254, Pittsburgh, PA, 1992), p. 3.Google Scholar
17.Radnóczi, G. and Barna, Á., Surf. Coating Tech. 80, 89 (1996).CrossRefGoogle Scholar
18.Fan, J. C. C. and Anderson, C. H., J. Appl. Phys. 52, 4003 (1981).CrossRefGoogle Scholar
19.Brophy, J. H., Rose, R. M., and Wulff, J., The Structure and Properties of Materials (John Wiley & Sons, Inc. New York, London, Sydney, 1996), Vol. II, p. 101.Google Scholar
20.Radnóczi, G. and Pécz, B., Thin Solid Films 232, 68 (1993).CrossRefGoogle Scholar
21.Okabe, T., Kagawa, Y., and Takai, S., Philos. Mag. Lett. 63, 5492 (1991).CrossRefGoogle Scholar
22.Fujita, A., Ultramicroscopy 39, 369 (1991).CrossRefGoogle Scholar
23.Czigány, Zs. and Radnóczi, G., J. Non-Cryst. Solids 175, 228 (1994).CrossRefGoogle Scholar
24.Handbook of Chemistry and Physics, 73rd ed. (CRC Press/pubn, Cleveland, OH, 19921993), p. 9131 and p. 9-132.Google Scholar
25.Theiss, S. D., Mitha, S., Spaepen, F., and Aziz, M. J., in Crystallization and Related Phenomena in Amorphous Materials, edited by M. Libera, T. E. Haynes, P. Cebe, and J. E. Dickinson, Jr. (Mater. Res. Soc. Symp. Proc. 321, 1994), p. 59.CrossRefGoogle Scholar
26.Daróczi, L., Beke, D. L., Langer, G., Gy. Radnóczi, and Zs. Czigány, J. Magnetism and Magnetic Mater. 156, 417 (1996).CrossRefGoogle Scholar
27.Ruppert, A. F., Persans, P. D., Hughes, G. J., Liang, K. S., Abeles, B., and Lanford, W., Phys. Rev. B 44, 11381 (1991).CrossRefGoogle Scholar
28.Beke, D. L., Defect and Diffusion Forum 129–130, 9 (1996).CrossRefGoogle Scholar
29.Greer, A. L., Defect and Diffusion Forum 129–130, 163 (1996).CrossRefGoogle Scholar
30.Räisänen, J., Hirvonen, J., and Anttila, A., Solid-State Electron. 24, 333 (1981).CrossRefGoogle Scholar