Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T03:27:50.528Z Has data issue: false hasContentIssue false

Annealing effects on phase transformation and powder microstructure of nanocrystalline zirconia polymorphs

Published online by Cambridge University Press:  26 July 2012

R. Ramamoorthy
Affiliation:
Department of Nuclear Physics, University of Madras, Guindy Campus, Madras 600 025, India
S. Ramasamy
Affiliation:
Department of Nuclear Physics, University of Madras, Guindy Campus, Madras 600 025, India
D. Sundararaman
Affiliation:
Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India
Get access

Extract

Nanocrystalline zirconia powders in pure form and doped with yttria and calcia were prepared by the precipitation method. In the as-prepared condition, all the doped samples show only monoclinic phase, independent of the dopants and dopant concentration. On annealing the powders at 400 °C and above, in the case of 3 and 6 mol% Y2O3 stabilized ZrO2 (3YSZ and 6YSZ), the monoclinic phase transforms to tetragonal and cubic phases, respectively, whereas in 3 and 6 mol% CaO stabilized ZrO2 (3CSZ and 6CSZ), the volume percentage of the monoclinic phase gradually decreases up to the annealing temperature of about 1000 °C and then increases for higher annealing temperatures. The presence of monoclinic phase in the as-prepared samples of doped zirconia has been attributed to the lattice strain effect which results in the less symmetric lattice. For the annealing temperatures below 1000 °C, the phenomenon of partial stabilization of the tetragonal phase in 3CSZ and 6CSZ can be explained in terms of the grain size effect. High resolution transmission electron microscopy (HRTEM) observations reveal the lattice strain structure in the as-prepared materials. The particles are found to be a tightly bound aggregate of small crystallites with average size of 10 nm. The morphology of the particles is observed to be dependent on the dopants and dopant concentration.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H., Nanostruc. Mater. 6, 3 (1995).CrossRefGoogle Scholar
2.Siegel, R. W., Sci. Am. 74 (Dec. 1996).CrossRefGoogle Scholar
3.Murase, Y. and Kato, E., J. Cryst. Growth 50, 509 (1980).CrossRefGoogle Scholar
4.Komerneni, S., Fregeau, E., Breval, E., and Roy, R., J. Am. Ceram. Soc. 71, C-26 (1988).Google Scholar
5.Cullitty, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., Reading, MA, 1978), p. 281.Google Scholar
6.Yashima, M., Hirose, T., Katano, S., Suzuki, Y., Kakihana, M., and Yoshimura, M., Phys. Rev. B 51, 8018 (1995).CrossRefGoogle Scholar
7.Ho, S. M., Mater. Sci. Eng. 54, 23 (1982).CrossRefGoogle Scholar
8.Stubican, V. S., Hink, R. C., and Ray, S. P., J. Am. Ceram. Soc. 73, 85 (1974).Google Scholar
9.Pascual, C. and Duran, P., J. Am. Ceram. Soc. 6, 23 (1983).CrossRefGoogle Scholar
10.Venkatachari, K. R., Huang, D., Ostrander, S. P., Schulze, W.A., and Stangle, G. C., J. Mater. Res. 10, 748 (1995).CrossRefGoogle Scholar
11.Nitsche, R., Winterer, M., and Hahn, H., Nanostruc. Mater. 6, 679 (1995).CrossRefGoogle Scholar
12.Gutzov, S., Ponahlo, J., Lengauer, C. L., and Beran, A., J. Am. Ceram. Soc. 77, 1649 (1994).CrossRefGoogle Scholar
13.Mitsuhashi, T., Ichihara, M., and Taksuke, U., J. Am. Ceram. Soc. 57, 97 (1974).CrossRefGoogle Scholar
14.Foster, C. M., Bai, G. R., Parker, J. C., and Ali, M. N., J. Mater. Res. 8, 1977 (1993).CrossRefGoogle Scholar
15.Haung, D., Venkatachari, K. R., and Stangle, G. C., J. Mater. Res. 10, 762 (1995).Google Scholar
16.Ayyub, P., Palkar, V. R., Chattopadyay, S., and Multani, M., Phys. Rev. B51, 6135 (1995–I).CrossRefGoogle Scholar
17.Yu, K. N., Xiong, Y., Liu, Y., and Xiang, C., Phys. Rev. B55, 2666 (1997–II).CrossRefGoogle Scholar
18.Michel, D., Mazerolles, L., and Gaffet, E., Third Euro-Ceramics 1, 225 (1980).Google Scholar
19.Cawley, J. D. and Lee, W.E., in Structure and Properties of Ceramics, edited by Swain, M. V. (Materials Science and Technology: A Comprehensive Treatment, edited by Cahn, R. W., Haasen, P., and Kramer, E.J. (VCH, Weinheim, Germany, 1994), Vol. 11, p. 106.Google Scholar
20.Nagai, A. and Kimura, Y., in Advanced Technical Ceramics, edited by Sōmiya, S. (Academic Press, Inc., Tokyo, 1989), p. 42.Google Scholar