Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T11:38:06.535Z Has data issue: false hasContentIssue false

Anisotropic crystal–melt interfacial energy and stiffness of aluminum

Published online by Cambridge University Press:  20 May 2015

Lingkang Wu
Affiliation:
Key Laboratory of Advanced Materials of Education of China, Tsinghua University, Beijing 100084, China; and School of Material Science and Engineering, Tsinghua University, Beijing 100084, China
Ben Xu*
Affiliation:
Key Laboratory of Advanced Materials of Education of China, Tsinghua University, Beijing 100084, China; and School of Material Science and Engineering, Tsinghua University, Beijing 100084, China
Qiulin Li*
Affiliation:
Key Laboratory of Advanced Materials of Education of China, Tsinghua University, Beijing 100084, China; and School of Material Science and Engineering, Tsinghua University, Beijing 100084, China
Wei Liu
Affiliation:
Key Laboratory of Advanced Materials of Education of China, Tsinghua University, Beijing 100084, China; and School of Material Science and Engineering, Tsinghua University, Beijing 100084, China
Mo Li*
Affiliation:
School of Material Science and Engineering, Tsinghua University, Beijing 100084, China; and School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The crystal–melt interfacial free energy is an important quantity governing many kinetic phenomena including solidification and crystal growth. Although general calculation methods are available, it is still difficult to obtain the interfacial energies that differ only slightly due to anisotropy. Here, we report such a calculation of Al crystal–melt interfacial energy based on the general framework of the capillary fluctuation method (CFM). The subtle dependence of both the melting temperature and interfacial free energy at melting temperature on the crystal interface orientation was examined. For Al, the average melting temperature is obtained at 934.79 ± 5 K and the orientationally averaged mean interfacial free energy is 98.35 mJ/m2. In addition, the anisotropy of the interfacial free energy is found weak, nevertheless with the values ranked as γ100 > γ110 > γ111.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Susan B. Sinnott

References

REFERENCES

Turnbull, D.: Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022 (1950).CrossRefGoogle Scholar
Turnbull, D. and Cech, R.E.: Microscopic observation of the solidification of small metal droplets. J. Appl. Phys. 21, 804 (1950).CrossRefGoogle Scholar
Kelton, K.F.: Crystal nucleation in liquids and glasses. Solid State Phys. 45, 75 (1991).CrossRefGoogle Scholar
Turnbull, D.: Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 20, 411 (1952).CrossRefGoogle Scholar
Kessler, D.A., Koplik, J., and Levine, H.: Geometrical models of interface evolution. II. Numerical simulation. Phys. Rev. A 29, 3161 (1984).CrossRefGoogle Scholar
Kessler, D.A. and Levine, H.: Velocity selection in dendritic growth. Phys. Rev. B 33, 7867 (1986).CrossRefGoogle ScholarPubMed
Langer, J.S.: Existence of needle crystals in local models of solidification. Phys. Rev. A 33, 435 (1986).CrossRefGoogle ScholarPubMed
Barbieri, A. and Langer, J.S.: Predictions of dendritic growth rates in the linearized solvability theory. Phys. Rev. A 39, 5314 (1989).CrossRefGoogle ScholarPubMed
Zanotto, E.D.: Crystallization of liquids and glasses. Braz. J. Phys. 22, 77 (1992).Google Scholar
Cacciuto, A., Auer, S., and Frenkel, D.: Solid–liquid interfacial free energy of small colloidal hard-sphere crystals. J. Chem. Phys. 119, 7467 (2003).CrossRefGoogle Scholar
Haxhimali, T., Karma, A., Gonzales, F., and Rappaz, M.: Orientation selection in dendritic evolution. Nat. Mater. 5, 660 (2006).CrossRefGoogle ScholarPubMed
Dullens, R.P.A., Aarts, D.G.A.L., and Kegel, W.K.: Colloidal crystal–fluid interfaces. Philos. Mag. Lett. 87, 893 (2007).CrossRefGoogle Scholar
Gündüz, M. and Hunt, J.D.: The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems. Acta Metall. 33, 1651 (1985).CrossRefGoogle Scholar
Napolitano, R.E., Liu, S., and Trivedi, R.: Experimental measurement of anisotropy in crystal-melt interfacial energy. Interface Sci. 10, 217 (2002).CrossRefGoogle Scholar
Keşlıoğlu, K., Gündüz, M., Kaya, H., and Çadırlı, E.: Solid-liquid interfacial energy in the Al-Ti system. Mater. Lett. 58, 3067 (2004).CrossRefGoogle Scholar
Hoyt, J.J., Asta, M., and Karma, A.: Method for computing the anisotropy of the solid-liquid interfacial free energy. Phys. Rev. Lett. 86, 5530 (2001).CrossRefGoogle ScholarPubMed
Akino, N., Schmid, F., and Allen, M.P.: Molecular-dynamics study of the nematic-isotropic interface. Phys. Rev. E 63, 041706 (2001).CrossRefGoogle ScholarPubMed
Hoyt, J.J. and Asta, M.: Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag. Phys. Rev. B 65, 214106 (2002).CrossRefGoogle Scholar
Asta, M., Hoyt, J.J., and Karma, A.: Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys. Rev. B 66, 100101 (2002).CrossRefGoogle Scholar
Morris, J.R.: Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys. Rev. B 66, 144104 (2002).CrossRefGoogle Scholar
Morris, J.R. and Song, X.Y.: The anisotropic free energy of the Lennard-Jones crystal-melt interface. J. Chem. Phys. 119, 3920 (2003).CrossRefGoogle Scholar
Sun, D.Y., Asta, M., and Hoyt, J.J.: Crystal-melt interfacial free energies in metals: fcc versus bcc. Phys. Rev. B 69, 174103 (2004).CrossRefGoogle Scholar
Mu, Y., Houk, A., and Song, X.Y.: Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces. J. Phys. Chem. B 109, 6500 (2005).CrossRefGoogle ScholarPubMed
Davidchack, R.L., Morris, J.R., and Laird, B.B.: The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations. J. Chem. Phys. 125, 094710 (2006).CrossRefGoogle ScholarPubMed
Foiles, S.M. and Hoyt, J.J.: Computation of grain boundary stiffness and mobility from boundary fluctuations. Acta Mater. 54, 3351 (2006).CrossRefGoogle Scholar
Wolfsheimer, S., Tanase, C., Shundyak, K., Roij, R.V., and Schilling, T.: Isotropic-nematic interface in suspension of hard rods: Mean-field properties and capillary waves. Phys. Rev. E 73, 061703 (2006).CrossRefGoogle ScholarPubMed
Feng, X.B. and Laird, B.B.: Calculation of the crystal-melt interfacial free energy of succinonitrile from molecular simulation. J. Chem. Phys. 124, 044707 (2006).CrossRefGoogle ScholarPubMed
Sun, D.Y., Mendelev, M.I., Becker, C.A., Kudin, K., Haxhimali, T., Asta, M., Hoyt, J.J., Karma, A., and Srolovitz, D.J.: Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg. Phys. Rev. B 73, 024116 (2006).CrossRefGoogle Scholar
Hoyt, J.J., Asta, M., and Sun, D.Y.: Molecular dynamics simulations of the crystal-melt interfacial free energy and mobility in Mo and V. Philos. Mag. 86, 3651 (2006).CrossRefGoogle Scholar
Morris, J.R., Mendelev, M.I., and Srolovitz, D.J.: A comparision of crystal-melt interfacial free energies using different Al potentials. J. Non-Cryst. Solids 353, 3565 (2007).CrossRefGoogle Scholar
Becker, C.A., Olmsted, D., Asta, M., Hoyt, J.J., and Foiles, S.M.: Atomistic underpinnings for orientation selection in alloy dendritic growth. Phys. Rev. Lett. 98, 125701 (2007).CrossRefGoogle ScholarPubMed
Amini, M. and Laird, B.B.: Crystal-melt interfacial free energy of binary hard spheres from capillary fluctuations. Phys. Rev. B 78, 144112 (2008).CrossRefGoogle Scholar
Becker, C.A., Olmsted, D.L., Asta, M., Hoyt, J.J., and Folies, S.M.: Atomistic simulations of crystal-melt interfaces in a model binary alloy: Interfacial free energies adsorption coefficients, and excess entropy. Phys. Rev. B 79, 054109 (2009).CrossRefGoogle Scholar
Rozas, R.E. and Horbach, J.: Capillary wave analysis of rough solid-liquid interfaces in nickel. EPL 93, 26006 (2011).CrossRefGoogle Scholar
Potter, A.A. and Hoyt, J.J.: A molecular dynamics simulation study of the crystal-melt interfacial free energy and its anisotropy in the Cu-Ag-Cu ternary system. J. Cryst. Growth 327, 227 (2011).CrossRefGoogle Scholar
Morris, J.R., Wang, C.Z., Ho, K.M., and Chan, C.T.: Melting line of aluminum from simulations of coexisting phases. Phys. Rev. B 49, 3109 (1994).CrossRefGoogle ScholarPubMed
Karma, A.: Fluctuations in solidification. Phys. Rev. E 48, 3441 (1993).CrossRefGoogle ScholarPubMed
Fehlner, W.R. and Vosko, S.H.: A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties. Can. J. Phys. 54, 2159 (1976).CrossRefGoogle Scholar
Mendelev, M.I., Kramer, M.J., Becker, C.A., and Asta, M.: Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 88, 1723 (2008).CrossRefGoogle Scholar
Bai, X.M. and Li, M.: Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach. J. Chem. Phys. 124, 124707 (2006).CrossRefGoogle ScholarPubMed
Smithels, C.I.: Metals Reference Book, 5th ed. (Butterworths, London, 1976); pp. 105150.Google Scholar
Hoyt, J.J., Trautt, Z.T., and Upmanyu, M.: Fluctuations in molecular dynamics simulations. Math. Comput. Simul. 80, 1382 (2010).CrossRefGoogle Scholar
Mei, J. and Davenport, J.W.: Free-energy calculations and the melting point of Al. Phys. Rev. B 46, 21 (1992).CrossRefGoogle ScholarPubMed
Sturgeon, J.B. and Laird, B.B.: Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum. Phys. Rev. B 62, 14720 (2000).CrossRefGoogle Scholar
Mendelev, M.I., Srolovitz, D.J., Ackland, G.J., and Han, S.: Effect of Fe segregation on the migration of a non-symmetric Σ5 tilt grain boundary in Al. J. Mater. Res. 20, 208 (2005).CrossRefGoogle Scholar
Ecolessi, F. and Adams, J.B.: Interatomic potentials from first-principles calculations: The force-matching method. Europhys. Lett. 26, 583 (1994).CrossRefGoogle Scholar