Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T05:32:12.687Z Has data issue: false hasContentIssue false

Analysis of depth profiles of sol-gel derived multilayer coatings by Rutherford backscattering spectrometry and by cross-sectional transmission electron microscopy1

Published online by Cambridge University Press:  31 January 2011

Carol L. Schutte
Affiliation:
Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138 and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Patrick M. Smith
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
George M. Whitesides*
Affiliation:
Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138
*
a)Address correspondence to this author.
Get access

Abstract

This paper describes the preparation and compositional analysis of multilayer thin-film coatings prepared using sol-gel techniques. Alternate layers were labeled with an iron tag, derived from hydrolyzed 1,1'-bis(triethoxysilyl)ferrocene. Iron-free layers were composed of SiO2 derived from hydrolyzed tetraethylorthosilicate (TEOS). Analyses of these systems were based on Rutherford Backscattering Spectrometry (RBS) and Cross-Sectional Transmission Electron Microscopy (XTEM). The depth profile of iron, measured by RBS, yielded thicknesses (1000–1600 Å) for the individual layers that could be verified independently by XTEM.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Supported in part by the National Science Foundation (CHE-88–12709) and the Defense Advanced Research Project Agency through the University Research Initiative. The Cambridge Accelerator for Materials Science was purchased through a DARPA/ URI grant and is housed in the Harvard University Materials Research Laboratory, an NSF-funded facility (DMR-86–14003).Google Scholar
2Thomas, I. M., Opt. News 12, 18 (1986).CrossRefGoogle Scholar
3Blum, J. B. and Cannon, W. R., Multilayer Ceramic Devices, Advances in Ceramics (The American Ceramics Society, Inc. Westerville, OH, 1986), Vol. 19.Google Scholar
4Brinker, C. J., Hurd, A. J., and Ward, K. J., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley and Sons, New York, 1988), pp. 223240.Google Scholar
5Schroeder, H., Phys. Thin Films 5, 87 (1969).Google Scholar
6Dislich, H. and Hassmann, E., Thin Solid Films 77, 129 (1981).CrossRefGoogle Scholar
7Dislich, H., J. Non-Cryst. Solids 57, 371 (1983).CrossRefGoogle Scholar
8Sakka, S., Kamiya, K., Makita, K., and Yamamoto, Y., J. Non-Cryst. Solids 63, 223 (1984).CrossRefGoogle Scholar
9Orgaz, F. and Rawson, R., J. Non-Cryst. Solids 82, 378 (1986).Google Scholar
10Brinker, C. J., Keefer, K. D., Schaefer, D. W., Assink, R. A., Kay, B. D., and Ashley, C. S., J. Non-Cryst. Solids 63, 45 (1984).CrossRefGoogle Scholar
11Sim, S. M., Chu, P-Y., Krabill, R. H., and Clark, D. E., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley and Sons, New York, 1988), p. 995.Google Scholar
12Geffcken, W. and Berger, E., Dtsch. Reichspatent 736 411 (1939), U.S. Patent 2366516 (1945).Google Scholar
13Schroeder, H., Opt. Acta 9, 249 (1962).Google Scholar
14Dislich, H. and Hinz, P., J. Non-Cryst. Solids 48, 11 (1982).CrossRefGoogle Scholar
15Sokolova, R. S., Sov. J. Opt. Technol. 40, 761 (1973).Google Scholar
16Phillips, R. W. and Dodds, J. W., Appl. Opt. 20, 40 (1981).Google Scholar
17Biswas, P., Kundu, D., and Ganguli, D., J. Mater. Sci. Lett. 6, 1481 (1987).CrossRefGoogle Scholar
18Mohallem, N. D. S. and Aegerter, M. A., J. Non-Cryst. Solids 100, 526 (1988).Google Scholar
19Thomas, I. M., Appl. Opt. 26, 4688 (1987).CrossRefGoogle Scholar
20Wrighton, M. S., Palazzotto, M. C., Bocarsly, A. B., Bolts, J. M., Fischer, A. B., and Nadjo, L., J. Am. Chem. Soc. 100, 7264 (1978).CrossRefGoogle Scholar
21Feldman, L. C. and Mayer, J. W., in Fundamentals of Surface and Thin Film Analysis (North-Holland, New York, 1986), p. 13.Google Scholar
22Wang, P. W., Feng, Y. P., Roth, W. L., and Corbett, J. W., J. Non-Cryst. Solids 104, 81 (1988).CrossRefGoogle Scholar
23Mayer, J. W., Solar Cells 1, 141 (1979/1980).CrossRefGoogle Scholar
24Vedam, K., McMarr, P. J., and Narayan, J., Appl. Phys. Lett. 47 (4), 339 (1985).CrossRefGoogle Scholar
25Vedam, K., MRS Bulletin January/February 15, 21 (1987).CrossRefGoogle Scholar
26Yamane, M., Caldwell, J. B., and Moore, D. T., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 765.Google Scholar
27Yamane, M., Kawazoe, H., Yasumori, A., and Takahashi, T., J. Non-Cryst. Solids 99, 160 (1988).CrossRefGoogle Scholar
28 Ref. 21, Eq. (3.32), p. 58.Google Scholar
29Winkle, M. R., Lansinger, J. M., and Ronald, R. C., J. Chem. Soc, Chem. Commun. 3, 87 (1980).CrossRefGoogle Scholar
30 SA, written by Patrick M. Smith, Division of Applied Sciences, Harvard University, is a FORTRAN program based on algorithms from Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry (Academic Press, New York, 1977).Google Scholar
31Specimen Preparation for Transmission Electron Microscopy of Materials, edited by Bravman, J. C., Anderson, R., and McDonald, M. L. (Mater. Res. Soc. Symp. Proc. 115, Pittsburgh, PA, 1988).Google Scholar
32 RUMP is a FORTRAN program written by Larry Doolittle containing algorithms from Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry (Academic Press, New York, 1977).Google Scholar