Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T03:33:22.808Z Has data issue: false hasContentIssue false

Analysis of buried oxide layer formation and mechanism of threading dislocation generation in the substoichiometric oxygen dose region

Published online by Cambridge University Press:  31 January 2011

Sadao Nakashima
Affiliation:
NTT LSI Laboratories, 3-1, Morinosato Wakamiya, Atsugi 243-01, Japan
Katsutoshi Izumi
Affiliation:
NTT LSI Laboratories, 3-1, Morinosato Wakamiya, Atsugi 243-01, Japan
Get access

Abstract

The structure of SIMOX wafers implanted at 180 keV with doses of 0.1 × 1018-2.0 × 101816O+ cm−2 at 550 °C, followed by annealing over the temperature range of 1050–1350 °C, has been investigated using cross-sectional transmission electron microscopy and a chemical etching. With doses of 0.35 × 1018-0.4 × 1018 cm−2, a continuous buried oxide layer having no Si island inside is formed by high-temperature annealing at 1350 °C. At a dose of 0.7 × 1018 cm−2, multilayered oxide striations appear in the as-implanted wafer. These striations grow into multiple buried oxide layers after annealing at 1150 °C. The multiple layers lead to a discontinuous buried oxide layer, resulting in the formation of a number of Si micropaths between the top Si layer and the Si substrate when the wafer is annealed at 1350 °C. These Si paths cause the breakdown electric field strength of the buried oxide layer to deteriorate. With doses of 0.2 × 1018-0.3 × 1018 cm−2 and of higher than 1.3 × 1018 cm−2, an extremely high density of threading dislocations is generated in the top Si layer after annealing at 1350 °C. The dislocation density is greatly reduced to less than 103 cm−2 when the oxygen dose falls in the range of 0.35 × 1018-1.2 × 1018 cm−2. Here we propose a mechanism that accounts for the threading dislocation generation at substoichiometric oxygen doses of less than 1.2 × 1018 cm−2.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Izumi, K., Doken, M., and Ariyoshi, H., Electron. Lett. 14 (18), 593 (1978).CrossRefGoogle Scholar
2Omura, Y. and Izumi, K., Proc. of the 4th Int. Symp. on Silicon-On-Insulator Technol. and Devices (The Electrochemical Society, 1990), p. 509.Google Scholar
3Ohno, T., Matsumoto, S., and Izumi, K., Electron. Lett. 25 (16), 1071 (1989).CrossRefGoogle Scholar
4Houston, T.W., Lu, H., Mei, P., Blake, T.G.W., Blake, L.R., Hite, L. R., Sundaresan, R., Matloubian, M., Baily, W.E., Lui, J., Peterson, A., and Pollack, G., IEEE SOS/SOI Technol. Conf. Proc, 137 (1989).Google Scholar
5Colinge, J. P., Electron. Lett. 22 (4), 187 (1985).CrossRefGoogle Scholar
6Nakashima, S. and Izumi, K., Electron. Lett. 26 (20), 1647 (1990).CrossRefGoogle Scholar
7Hill, D., Fraundorf, P., and Fraundorf, G., J. Appl. Phys. 63 (10), 4993 (1988).CrossRefGoogle Scholar
8Ommen, A. H. van, Ligthart, H. J., Politiek, J., and Viegers, M. P. A., in Materials Modification and Growth Using Ion Beams, edited by Gibson, U., White, A. E., and Pronko, P. P. (Mater. Res. Soc. Symp. Proc. 93, Pittsburgh, PA, 1987), p. 119.Google Scholar
9Omura, Y., Nakashima, S., Izumi, K., and Ishii, T., IEEE IEDM Tech. Dig., 675 (1991).Google Scholar
10Ruffell, J. P., Douglas-Hamilton, D. H., Kaim, R. E., and Izumi, K., Nucl. Instrum. Methods B21, 229 (1987).Google Scholar
11Lam, H.W., Pinizzotto, R.F., Yuan, H.T., and Bellavance, D.W., Electron. Lett. 17 (10), 356 (1981).CrossRefGoogle Scholar
12Nakashima, S. and Izumi, K., J. Mater. Res. 5, 1918 (1990).CrossRefGoogle Scholar
13Stoemenos, J., Margail, J., Jaussaud, C., Dupuy, M., and Bruel, M., Appl. Phys. Lett. 48 (21), 1470 (1986).CrossRefGoogle Scholar
14El-Ghor, M. K., Pennycook, S.J., Sjoreen, T. P., and Narayan, J., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S.T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 591.Google Scholar
15Reeson, K.J., Robinson, A.K., Hemment, P.L.F., Marsh, CD., Christensen, K.N., Booker, G.R., Charter, R.J., Kilner, K.J., Harbeke, G., Steigmeir, E. F., and Celler, G. K., Microelectron. Eng. 8, 163 (1988).CrossRefGoogle Scholar
16Stoemenos, J., Reeson, K.J., Robinson, A.K., and Hemment, P.L.F., J. Appl. Phys. 69 (2), 793 (1991).CrossRefGoogle Scholar
17Visitserngtrakul, S., Jung, C. O., Ravi, T. S., Cordts, B., Burke, D. E., and Krause, S. J., in Microscopy of Semiconducting Materials 1989, edited by Cullis, A. G. and Hutchison, J. L. (Inst. Phys. Conf. Ser. No. 100, 1989), p. 557.Google Scholar
18Visitserngtrakul, S. and Krause, S.J., J. Appl. Phys. 69 (3), 1784 (1991).CrossRefGoogle Scholar
19Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), Vol. 1.Google Scholar
20Gibbons, J. F., Johnson, W. S., and Mylroie, S. W., Projected Range Statistics (John Wiley and Sons Inc., New York, 1975).Google Scholar
21Sze, S.M., Physics of Semiconductor Devices (John Wiley and Sons Inc., New York, 1981).Google Scholar
22White, A.E., Short, K.T., Batstone, J. L., Jacobson, D. C., Poate, J.M., and West, K.W., Appl. Phys. Lett. 50 (1), 19 (1987).CrossRefGoogle Scholar
23Takano, Y., Kozuka, H., Ogino, M., and Maki, M., in Semiconductor Silicon, edited by Huff, H.R., Kriegler, R.J., and Kakeishi, Y. (Electrochemical Society, 1981), p. 743.Google Scholar
24Burke, J., The Kinetics of Phase Transformation in Metals (Pergamon Press, New York, 1965).Google Scholar
25Krause, S.J., Jung, CO., Burnham, M.E., and Wilson, S.R., in Microscopy of Semiconducting Materials 1987, edited by Cullis, A. G. and Augustus, P. D., Inst. Phys. Conf. Ser. No. 87, 391 (1987).Google Scholar
26Stoemenos, J., Thin Solid Films 135, 114 (1986).CrossRefGoogle Scholar
27Krause, S.J., Jung, CO., Ravi, T.S., Wilson, S.R., and Burke, D.E., in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by Sturm, J. C., Chen, C. K., Pfeiffer, L., and Hemment, P. L. F. (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 93.Google Scholar
28Yoshino, A., Kasama, K., and Sakamoto, M., Nucl. Instrum. Methods B39, 203 (1989).Google Scholar
29Jaussaud, C., Stoemenos, J., Margail, J., Dupuy, M., Blanchard, B., and Bruel, M., Appl. Phys. Lett. 46 (11), 1064 (1985).CrossRefGoogle Scholar
30Hemment, P.L.F., Reeson, K.J., Kilner, J.A., Chater, R.J., Marsh, C., Booker, G. R., Celler, G. K., and Stoemenos, J., Vacuum 36 (11/12), 877 (1986).CrossRefGoogle Scholar
31Celler, G.K., Hemment, P.L. F., West, K.W., and Gibson, J.M., Appl. Phys. Lett. 48 (8), 532 (1986).CrossRefGoogle Scholar
32Ashby, M. F. and Johnson, L., Philos. Mag. 20, 1009 (1969).CrossRefGoogle Scholar
33Jaussaud, C, Margail, J., Stoemenos, J., and Bruel, M., in Siliconon-Insulator and Buried Metals in Semiconductors, edited by Sturm, J. C., Chen, C. K., Pfeiffer, L., and Hemment, P. L. F. (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 17.Google Scholar