Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T05:26:51.716Z Has data issue: false hasContentIssue false

An x-ray photoelectron spectroscopic study of the chemical states of fluorine atoms in calcium silicate glasses

Published online by Cambridge University Press:  31 January 2011

Satoshi Hayakawa
Affiliation:
Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima, Okayama-shi 700, Japan
Akira Nakao
Affiliation:
Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima, Okayama-shi 700, Japan
Chikara Ohtsutki
Affiliation:
Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima, Okayama-shi 700, Japan
Akiyoshi Osaka
Affiliation:
Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima, Okayama-shi 700, Japan
Shuji Matsumoto
Affiliation:
Department of Environmental Chemistry and Materials, Faculty of Environmental Science and Technology, Okayama University, Tsushima, Okayama-shi 700, Japan
Yoshinari Miura
Affiliation:
Department of Environmental Chemistry and Materials, Faculty of Environmental Science and Technology, Okayama University, Tsushima, Okayama-shi 700, Japan
Get access

Abstract

X-ray photoelectron spectroscopy has been used to examine the chemical states of fluorine in the glasses of composition xCaF2(50 – x)CaO · 50SiO2 (x = 5, 10, 15, 20, and 25 mol %) and xCaF2(50 – x/2)CaO(50 – x/2)SiO2 (x = 5, 10, 15, and 20 mol %). The analysis of the F1s spectra indicated that Ca2+ and F- ions introduced as CaF2 are favorably located among the Si–O skeleton forming Ca–F clusters. The fraction of the bridging and nonbridging oxygen atoms was derived from the O1s spectra, and the network of the fluorine-containing glasses was concluded to depend only on the ratio CaO/SiO2.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gozen, T., Tanaka, H., Utsumi, A., Maeda, T., and Okamoto, S., Annual Report of Conference on Electrical Insulation and Dielectric Phenomenon, Wilmington, DE (1984), p. 65.Google Scholar
2.Stevic, S., Aleksic, R., and Backovic, N., J. Am. Ceram. Soc. 70, C264265 (1987).CrossRefGoogle Scholar
3.Hirao, K., Tsujimura, A., Tanabe, S., and Soga, N., Mater. Sci. Forum 32–33, 415420 (1988).Google Scholar
4.Wang, Y. H., Osaka, A., Miura, Y., and Tsugaru, T., J. Mater. Sci. Lett. 8, 421423 (1989).CrossRefGoogle Scholar
5.Osaka, A., Miura, Y., and Tsugaru, T., J. Non-Cryst. Solids 125, 8792 (1990).CrossRefGoogle Scholar
6.Anma, M., Yano, T., Yasumori, A., Kawazoe, H., Yamane, M., Yamanaka, H., and Katada, M., J. Non-Cryst. Solids 135, 79 (1991).Google Scholar
7.Osaka, A., Wang, Y. H., Miura, Y., and Tsugaru, T., J. Mater. Sci. 26, 27782882 (1991).CrossRefGoogle Scholar
8.Brow, R. K., Tallant, D. R., Osbone, Z. A., Yang, Y., and Day, D. E., Phys. Chem. Glass 32, 188195 (1991).Google Scholar
9.Chowdari, B. V. R., Mok, K. F., Xie, J. M., and Gopalakrishnan, R., Solid State Ionics 76, 189198 (1995).Google Scholar
10.Chowdari, B. V. R. and Rong, Z., Solid State Ionics 78, 133142 (1995).CrossRefGoogle Scholar
11.Kozakevitch, P., Rev. Met. 46, 572 (1946).Google Scholar
12.Bills, P. M., J. Iron Steel Inst. 201, 133 (1963).Google Scholar
13.Kumar, D., Ward, R. G., and Williams, D. J., Disc. Faraday Soc. 32, 147 (1961).CrossRefGoogle Scholar
14.Kumar, D., Ward, R. G., and Williams, D. J., Trans. Faraday Soc. 61, 1850 (1965).Google Scholar
15.Mitchell, A., Trans. Faraday Soc. 63, 1408 (1967).Google Scholar
16.Luth, R. W., Am. Mineral. 73, 297305 (1988).Google Scholar
17.Tsunawaki, Y., Iwamoto, N., Hattori, T., and Mitsuishi, A., J. Non-Cryst. Solids 44, 369378 (1981).CrossRefGoogle Scholar
18.Iwamoto, N. and Makino, Y., J. Non-Cryst. Solids 46, 8194 (1981).CrossRefGoogle Scholar
19.Matsumoto, S., Miura, Y., Nanba, T., and Osaka, A., Proceedings of XVII International Congress on Glass, Beijing (1995), Vol. 3, pp. 7277.Google Scholar
20.Kawamura, K., MXDORTO system; Japan Chemistry Program Exchange (JCPE) P090, revised by M., Kanzaki.Google Scholar
21.Kawamura, K., “Pasokon bunshi shimyure-syon (Molecular simulation by personal computers)” (Kaibundo Publisher Inc., Tokyo, 1990).Google Scholar
22.Bruckner, R., Chun, H., and Goretzki, H., Glastech. Ber. 51, 17 (1978).Google Scholar
23.Duncan, T. M., Douglass, D. C., Csencsits, R., and Walker, K. L., J. Appl. Phys. 60 (1), 130136 (1986).CrossRefGoogle Scholar