Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T21:39:14.113Z Has data issue: false hasContentIssue false

An optimum heating program for fabricating MTG Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductors

Published online by Cambridge University Press:  03 March 2011

Z.L. Du
Affiliation:
Physics Department, The University of Zhongshan, Guangzhou, China
T.F. Yu
Affiliation:
Physics Department, The University of Hong Kong, Hong Kong
J.C.L. Chow
Affiliation:
Physics Department, The University of Hong Kong, Hong Kong
P.C.W. Fung
Affiliation:
Physics Department, The University of Hong Kong, Hong Kong
Get access

Abstract

Following our recent report on the successful fabrication of “stationary” MTG Bi1.6Pb0.4Sr2Ca2Cu3Oy pellets in a simple tube furnace, we have tried many heating programs with various “crystal growth starting temperatures”, Ts, and sintering temperatures, Te; the samples are sintered for 20–40 h before quenching in air. It is found that Ts-Te should be rather narrow to produce good MTG samples, and the typical value of Jc is enhanced from 100 A cm−2 (for a polycrystalline sample) to about 3 × 103 A cm−2 for our good ones. SEM and TEM results indicate that the samples are full of packs which contain highly oriented mica-like layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Du, Z. L., Fung, P. C. W., Chow, J. C. L., He, Z. H., and Yu, T. F., unpublished research.Google Scholar
2Du, Z. L., Fung, P. C. W., He, Z. H., Zhou, G. H., Li, M. J., Lu, Y., and Zhang, J. X., J. Supercond. 6, 2735 (1993).CrossRefGoogle Scholar
3Fung, P. C. W., Du, Z. L., Chow, J. C. L., He, Z. H., Yu, T. F., Luo, Y. Y., Li, Q. Y., and Lu, Y., Physica C 212, 279291 (1993).CrossRefGoogle Scholar
4Du, Z. L., Fung, P. C. W., Chow, J. C. L., Yu, T. F., He, Z. H., Li, Y., Luo, Y. Y., and Zhang, J. X., Physica C 215, 319328 (1993).CrossRefGoogle Scholar
5Fung, P. C. W., Chow, J. C. L., Yu, T. F., and Du, Z. L., J. Supercond. 6, (4), 247254 (1993).CrossRefGoogle Scholar
6Young, F., Lian, Z., Pingxiang, Z., Keguang, W., Ping, J., Xiaozu, W., Changxun, L., and Mianrong, X., Supercond. Sci. Technol. 5, 432434 (1992).Google Scholar
7Dou, S. X., Liu, H. K., Wang, J., and Bian, W. M., Supercond. Sci. Technol. 4, 2126 (1991).CrossRefGoogle Scholar
8Guo, Y. C., Liu, H. K., and Dou, S. X., Appl. Supercond. 1 (1/2), 2531 (1993).CrossRefGoogle Scholar
9Chin, T. S., Perng, L. H., and Lin, C. H., Supercond. Sci. Technol. 4, 294300 (1991).CrossRefGoogle Scholar
10Wu, C. T., Goretta, K. C., and Poeppel, R. B., Applied Supercond. 1 (1/2), 3342 (1993).CrossRefGoogle Scholar
11Nomura, K., Seido, M., Kitaguchi, H., Kumakura, H., Togano, K., and Maeda, H., Appl. Phys. Lett. 62 (17), 21312133 (1993).CrossRefGoogle Scholar
12Fung, P. C. W., Chow, J. C. L., and Gao, J., J. Supercond. 6 (5), 327334 (1993).CrossRefGoogle Scholar
13Matsushita, T., Suzuki, A., Teramoto, K., Okuda, M., and Naito, H., Supercond. Sci. Technol. 4, 721724 (1991).CrossRefGoogle Scholar
14Vlasse, M., Golben, J., and Mitchell, T., Supercond. Sci. Technol. 5, 236239 (1992).CrossRefGoogle Scholar
15Feng, Qing-rong, Zhang, H., Feng, Sun-qi, Zhu, X., Wu, K., Liu, Zunxiao, and Xue, Li-xin, Solid State Commun. 78 (7), 609613 (1991).CrossRefGoogle Scholar
16Xin, Y., Sheng, Z. Z., Chan, F. T., Fung, P. C. W., and Wong, K. W., Solid State Commun. 76 (12), 13471350 (1990).CrossRefGoogle Scholar
17Fung, P. C. W., Lin, Z. C., Liu, Z. M., Xin, Y., Sheng, Z. Z., Chan, F. T., Wong, K. W., Xu, Y-N., and Ching, W.Y., Solid State Commun. 75 (3), 211216 (1990).CrossRefGoogle Scholar