Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-20T13:38:47.335Z Has data issue: false hasContentIssue false

An investigation of a nonspiking Ohmic contact to n-GaAs using the Si/Pd system

Published online by Cambridge University Press:  31 January 2011

L. C. Wang
Affiliation:
Department of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093
B. Zhang
Affiliation:
Department of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093
F. Fang
Affiliation:
Department of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093
E. D. Marshall
Affiliation:
Department of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093
S. S. Lau
Affiliation:
Department of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093
T. Sands
Affiliation:
Bell Communications Research Inc., Red Bank, New Jersey 07701
T. F. Kuech
Affiliation:
IBM, Thomas J. Watson Research Laboratory, Yorktown Heights, New York 10598
Get access

Abstract

A low-resistance nonspiking Ohmic contact to n-GaAs is formed via solid-state reactions utilizing the Si/Pd/GaAs system. Samples with Si to Pd atomic ratios greater than 0.65 result in specific contact resistivity of the order of 10−6 Ω cm2, whereas samples with atomic ratios less than 0.65 yield higher specific contact resistivities or rectifying contacts. Rutherford backscattering spectrometry, cross-sectional transmission electron microscopy, and electron diffraction patterns show that a Pd, Si layer is in contact with GaAs with excess Si on the surface after the Ohmic formation annealing. This observation contrasts with that on a previously studied Ge/Pd/GaAs contact where Ohmic behavior is detected after transport of Ge through PdGe to the interface with GaAs. Comparing the Ge/Pd/GaAs system with the present Si/Pd/GaAs system suggests that a low barrier heterojunction between Ge and GaAs is not the primary reason for Ohmic contact behavior. Low-temperature measurements suggest that Ohmic behavior results from tunneling current transport mechanisms. A regrowth mechanism involving the formation of an n+ GaAs surface layer is proposed to explain the Ohmic contact formation.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Marshall, E. D., Chen, W. X., Wu, C. S., Lau, S. S., and Kuech, T. F., Appl. Phys. Lett. 47, 298 (1985).CrossRefGoogle Scholar
2Marshall, E. D., Zhang, B., Wang, L. C., Jiao, P. F., Chen, W. X., Sawada, T., Lau, S. A., Kavanagh, K. L., and Kuech, T. F., J. Appl. Phys. 62, 942 (1987).CrossRefGoogle Scholar
3Sands, T., Keramidas, V. G., Yu, A. J., Yu, K. M., Gronsky, R., and Washburn, J., Mater Res. Soe. Symp. Proc. 54, 367 (1986).CrossRefGoogle Scholar
4Kobayashi, A., Sakurai, T., Hashizume, T., and Sakata, T., J. Appl. Phys. 59, 3448 (1986).CrossRefGoogle Scholar
5Ballingall, J. M., Wood, C. E. C., and Eastman, L. F., J. Vac. Sci. Technol. B 1, 675 (1983).CrossRefGoogle Scholar
6Katnani, A. D., Chiaradia, P., Sang, H. W. Jr , and Bauer, R. S., J. Vac. Sci. Technol. B 2, 471 (1984).CrossRefGoogle Scholar
7Canali, C., Campisano, S. U., Lau, S. S., Liau, Z. L., and Mayer, J. W., J. Appl. Phys. 46, 2831 (1975).CrossRefGoogle Scholar
8Berger, H. H., Solid State Electron. 15, 145 (1972).CrossRefGoogle Scholar
9Sands, T., Keramidas, V. G., Gronsky, R., and Washburn, J., Mater. Lett. 3, 409 (1985).CrossRefGoogle Scholar
10Kuan, T. S., Freeouf, J. F., Batson, P. E., and Wilkie, E. L., J. Appl. Phys. 58, 1519 (1985).CrossRefGoogle Scholar
11Pearson, W. B., A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1964).Google Scholar
12Chang, Y., Fang, K., and Sze, S. M., Solid State Electron. 14, 727 (1969).Google Scholar
13Crowell, C. R. and Rideout, V. L., Solid State Electron. 12, 88 (1969).Google Scholar
14Popovic, R. S., Solid State Electron. 21, 1133 (1978).CrossRefGoogle Scholar
15Sands, T., Marshall, E. D., and Wang, L. C., J. Mater. Res. 3, 914 (1988).CrossRefGoogle Scholar
16Onuma, T., Hirao, T., and Sugawa, T., J. Electrochem. Soc. 129, 837 (1982).CrossRefGoogle Scholar
17Greiner, M. E. and Gibbons, J. F., Appl. Phys. Lett. 44, 750 (1984).CrossRefGoogle Scholar
18Chu, W. K., Lau, S. S., and Mayer, J. W., Appl. Phys. Lett. 24, 391 (1974).Google Scholar
19Lau, S. S. and Sigurd, D., J. Electrochem. Soc. 121, 1538 (1974).CrossRefGoogle Scholar
20Marshall, E. D., Wu, C. S., Scott, D. M., Lau, S. S., and Kuech, T. F., Mat. Res. Soc. Symp. Proc. 25, 63 (1984).CrossRefGoogle Scholar