Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T16:29:40.190Z Has data issue: false hasContentIssue false

An in situ study on Kr ion–irradiated crystalline Cu/amorphous-CuNb nanolaminates

Published online by Cambridge University Press:  04 March 2019

Zhe Fan*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Cuncai Fan*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Jin Li
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Zhongxia Shang
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Sichuang Xue
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Marquis A. Kirk
Affiliation:
Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
Meimei Li
Affiliation:
Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
Haiyan Wang
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA; and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Xinghang Zhang*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Nanocrystalline and nanolaminated materials show enhanced radiation tolerance compared with their coarse-grained counterparts, since grain boundaries and layer interfaces act as effective defect sinks. Although the effects of layer interface and layer thickness on radiation tolerance of crystalline nanolaminates have been systematically studied, radiation response of crystalline/amorphous nanolaminates is rarely investigated. In this study, we show that irradiation can lead to formation of nanocrystals and nanotwins in amorphous CuNb layers in Cu/amorphous-CuNb nanolaminates. Substantial element segregation is observed in amorphous CuNb layers after irradiation. In Cu layers, both stationary and migrating grain boundaries effectively interact with defects. Furthermore, there is a clear size effect on irradiation-induced crystallization and grain coarsening. In situ studies also show that crystalline/amorphous interfaces can effectively absorb defects without drastic microstructural change, and defect absorption by grain boundary and crystalline/amorphous interface is compared and discussed. Our results show that tailoring layer thickness can enhance radiation tolerance of crystalline/amorphous nanolaminates and can provide insights for constructing crystalline/amorphous nanolaminates under radiation environment.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

References

Mansur, L.K., Rowcliffe, A., Nanstad, R., Zinkle, S., Corwin, W., and Stoller, R.: Materials needs for fusion, Generation IV fission reactors and spallation neutron sources–similarities and differences. J. Nucl. Mater. 329, 166 (2004).CrossRefGoogle Scholar
Zinkle, S.J. and Busby, J.T.: Structural materials for fission & fusion energy. Mater. Today 12, 12 (2009).CrossRefGoogle Scholar
Allen, T., Busby, J., Meyer, M., and Petti, D.: Materials challenges for nuclear systems. Mater. Today 13, 14 (2010).CrossRefGoogle Scholar
Zinkle, S.J. and Was, G.: Materials challenges in nuclear energy. Acta Mater. 61, 735 (2013).CrossRefGoogle Scholar
Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., and Samolyuk, G.D.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).CrossRefGoogle ScholarPubMed
Beyerlein, I., Caro, A., Demkowicz, M., Mara, N., Misra, A., and Uberuaga, B.: Radiation damage tolerant nanomaterials. Mater. Today 16, 443 (2013).CrossRefGoogle Scholar
Odette, G., Alinger, M., and Wirth, B.: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471 (2008).CrossRefGoogle Scholar
Aydogan, E., Almirall, N., Odette, G., Maloy, S., Anderoglu, O., Shao, L., Gigax, J., Price, L., Chen, D., and Chen, T.: Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations. J. Nucl. Mater. 486, 86 (2017).CrossRefGoogle Scholar
Chen, T., Aydogan, E., Gigax, J.G., Chen, D., Wang, J., Wang, X., Ukai, S., Garner, F.A., and Shao, L.: Microstructural changes and void swelling of a 12Cr ODS ferritic-martensitic alloy after high-dpa self-ion irradiation. J. Nucl. Mater. 467, 42 (2015).CrossRefGoogle Scholar
Edmondson, P., Parish, C., Li, Q., and Miller, M.: Thermal stability of nanoscale helium bubbles in a 14YWT nanostructured ferritic alloy. J. Nucl. Mater. 445, 84 (2014).CrossRefGoogle Scholar
El-Atwani, O., Hattar, K., Hinks, J., Greaves, G., Harilal, S., and Hassanein, A.: Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions. J. Nucl. Mater. 458, 216 (2015).CrossRefGoogle Scholar
Yu, K., Liu, Y., Sun, C., Wang, H., Shao, L., Fu, E., and Zhang, X.: Radiation damage in helium ion irradiated nanocrystalline Fe. J. Nucl. Mater. 425, 140 (2012).CrossRefGoogle Scholar
Chen, Y., Li, J., Yu, K.Y., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: In situ studies on radiation tolerance of nanotwinned Cu. Acta Mater. 111, 148 (2016).CrossRefGoogle Scholar
Fan, C., Li, J., Fan, Z., Wang, H., and Zhang, X.: In situ studies on the irradiation-induced twin boundary-defect interactions in Cu. Metall. Mater. Trans. A 48, 5172 (2017).CrossRefGoogle Scholar
Jiao, L., Chen, A., Myers, M.T., General, M.J., Shao, L., Zhang, X., and Wang, H.: Enhanced ion irradiation tolerance properties in TiN/MgO nanolayer films. J. Nucl. Mater. 434, 217 (2013).CrossRefGoogle Scholar
Kim, I., Jiao, L., Khatkhatay, F., Martin, M.S., Lee, J., Shao, L., Zhang, X., Swadener, J.G., Wang, Y.Q., Gan, J., Cole, J.I., and Wang, H.: Size-dependent radiation tolerance in ion irradiated TiN/AlN nanolayer films. J. Nucl. Mater. 441, 47 (2013).CrossRefGoogle Scholar
Yu, K.Y., Sun, C., Chen, Y., Liu, Y., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study. Philos. Mag. 93, 3547 (2013).CrossRefGoogle Scholar
Chen, D., Li, N., Yuryev, D., Baldwin, J.K., Wang, Y., and Demkowicz, M.J.: Self-organization of helium precipitates into elongated channels within metal nanolayers. Sci. Adv. 3, eaao2710 (2017).CrossRefGoogle ScholarPubMed
Zhang, X., Hattar, K., Chen, Y., Shao, L., Li, J., Sun, C., Yu, K., Li, N., Taheri, M.L., Wang, H., Wang, J., and Nastasi, M.: Radiation damage in nanostructured materials. Prog. Mater. Sci. 96, 217 (2018).CrossRefGoogle Scholar
Hattar, K., Demkowicz, M., Misra, A., Robertson, I., and Hoagland, R.: Arrest of He bubble growth in Cu–Nb multilayer nanocomposites. Scr. Mater. 58, 541 (2008).CrossRefGoogle Scholar
Misra, A., Demkowicz, M., Zhang, X., and Hoagland, R.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62 (2007).CrossRefGoogle Scholar
Han, W., Mara, N., Wang, Y., Misra, A., and Demkowicz, M.: He implantation of bulk Cu–Nb nanocomposites fabricated by accumulated roll bonding. J. Nucl. Mater. 452, 57 (2014).CrossRefGoogle Scholar
Fu, E.G., Misra, A., Wang, H., Shao, L., and Zhang, X.: Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J. Nucl. Mater. 407, 178 (2010).CrossRefGoogle Scholar
Fu, E.G., Carter, J., Swadener, G., Misra, A., Shao, L., Wang, H., and Zhang, X.: Size dependent enhancement of helium ion irradiation tolerance in sputtered Cu/V nanolaminates. J. Nucl. Mater. 385, 629 (2009).CrossRefGoogle Scholar
Li, N., Martin, M.S., Anderoglu, O., Misra, A., Shao, L., Wang, H., and Zhang, X.: He ion irradiation damage in Al/Nb multilayers. J. Appl. Phys. 105, 123522 (2009).CrossRefGoogle Scholar
Li, N., Carter, J.J., Misra, A., Shao, L., Wang, H., and Zhang, X.: The influence of interfaces on the formation of bubbles in He-ion-irradiated Cu/Mo nanolayers. Philos. Mag. Lett. 91, 18 (2011).CrossRefGoogle Scholar
Yu, K.Y., Liu, Y., Fu, E.G., Wang, Y.Q., Myers, M.T., Wang, H., Shao, L., and Zhang, X.: Comparisons of radiation damage in He ion and proton irradiated immiscible Ag/Ni nanolayers. J. Nucl. Mater. 440, 310 (2013).CrossRefGoogle Scholar
Li, N., Fu, E.G., Wang, H., Carter, J.J., Shao, L., Maloy, S.A., Misra, A., and Zhang, X.: He ion irradiation damage in Fe/W nanolayer films. J. Nucl. Mater. 389, 233 (2009).CrossRefGoogle Scholar
Zhang, J., Wang, Y., Liang, X., Zeng, F., Liu, G., and Sun, J.: Size-dependent He-irradiated tolerance and plastic deformation of crystalline/amorphous Cu/Cu–Zr nanolaminates. Acta Mater. 92, 140 (2015).CrossRefGoogle Scholar
Yu, K.Y., Fan, Z., Chen, Y., Song, M., Liu, Y., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe2Zr nanocomposite alloy. Mater. Res. Lett. 3, 35 (2014).CrossRefGoogle Scholar
Chen, Y., Jiao, L., Sun, C., Song, M., Yu, K., Liu, Y., Kirk, M., Li, M., Wang, H., and Zhang, X.: In situ studies of radiation induced crystallization in Fe/a-Y2O3 nanolayers. J. Nucl. Mater. 452, 321 (2014).CrossRefGoogle Scholar
Hofmann, D.C., Suh, J-Y., Wiest, A., Duan, G., Lind, M-L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).CrossRefGoogle ScholarPubMed
He, G., Löser, W., Eckert, J., and Schultz, L.: Enhanced plasticity in a Ti-based bulk metallic glass-forming alloy by in situ formation of a composite microstructure. J. Mater. Res. 17, 3015 (2002).CrossRefGoogle Scholar
Fan, Z., Li, J., Yang, Y., Wang, J., Li, Q., Xue, S., Wang, H., Lou, J., and Zhang, X.: “Ductile” fracture of metallic glass nanolaminates. Adv. Mater. Interfaces 4, 1700510 (2017).CrossRefGoogle Scholar
Wang, Y., Li, J., Hamza, A.V., and Barbee, T.W.: Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. U. S. A. 104, 11155 (2007).CrossRefGoogle ScholarPubMed
Lee, M.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).CrossRefGoogle Scholar
Kim, J.Y., Jang, D., and Greer, J.R.: Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses. Adv. Funct. Mater. 21, 4550 (2011).CrossRefGoogle Scholar
Fan, Z., Xue, S., Wang, J., Yu, K.Y., Wang, H., and Zhang, X.: Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Mater. 120, 327 (2016).CrossRefGoogle Scholar
Wu, Y., Xiao, Y., Chen, G., Liu, C.T., and Lu, Z.: Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 22, 2770 (2010).CrossRefGoogle ScholarPubMed
Fan, Z., Liu, Y., Xue, S., Rahimi, R.M., Bahr, D.F., Wang, H., and Zhang, X.: Layer thickness dependent strain rate sensitivity of Cu/amorphous CuNb multilayer. Appl. Phys. Lett. 110, 161905 (2017).CrossRefGoogle Scholar
Chen, M., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).CrossRefGoogle ScholarPubMed
Pauly, S., Gorantla, S., Wang, G., Kühn, U., and Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).CrossRefGoogle ScholarPubMed
Nino, A., Nagase, T., and Umakoshi, Y.: Electron irradiation induced nano-crystallization in Fe77Nd4.5B18.5 metallic glass. Mater. Trans. 46, 1814 (2005).CrossRefGoogle Scholar
Nagase, T., Nakamura, M., and Umakoshi, Y.: Electron irradiation induced nano-crystallization in Zr66.7Ni33.3 amorphous alloy and Zr60Al15Ni25 metallic glass. Intermetallics 15, 211 (2007).CrossRefGoogle Scholar
Fu, E., Carter, J., Martin, M., Xie, G., Zhang, X., Wang, Y., Littleton, R., and Shao, L.: Electron irradiation-induced structural transformation in metallic glasses. Scr. Mater. 61, 40 (2009).CrossRefGoogle Scholar
Xie, G., Zhang, Q., Louzguine-Luzgin, D.V., Zhang, W., and Inoue, A.: Nanocrystallization of Cu50Zr45Ti5 metallic glass induced by electron irradiation. Mater. Trans. 47, 1930 (2006).CrossRefGoogle Scholar
Tarumi, R., Takashima, K., and Higo, Y.: Formation of oriented nanocrystals in an amorphous alloy by focused-ion-beam irradiation. Appl. Phys. Lett. 81, 4610 (2002).CrossRefGoogle Scholar
Brimhall, J.: Effect of irradiation particle mass on crystallization of amorphous alloys. J. Mater. Sci. 19, 1818 (1984).CrossRefGoogle Scholar
Luo, W., Yang, B., and Chen, G.: Effect of Ar+ ion irradiation on the microstructure and properties of Zr–Cu–Fe–Al bulk metallic glass. Scr. Mater. 64, 625 (2011).CrossRefGoogle Scholar
Carter, J., Fu, E., Martin, M., Xie, G., Zhang, X., Wang, Y., Wijesundera, D., Wang, X., Chu, W-K., and Shao, L.: Effects of Cu ion irradiation in Cu50Zr45Ti5 metallic glass. Scr. Mater. 61, 265 (2009).CrossRefGoogle Scholar
Myers, M., Charnvanichborikarn, S., Wei, C., Luo, Z., Xie, G., Kucheyev, S., Lucca, D., and Shao, L.: Phase transition, segregation and nanopore formation in high-energy heavy-ion-irradiated metallic glass. Scr. Mater. 67, 887 (2012).CrossRefGoogle Scholar
Xie, G., Shao, L., Louzguine-Luzgin, D.V., and Inoue, A.: He ion irradiation induced nanocrystallization in Cu50Zr45Ti5 glassy alloy. Surf. Coat. Technol. 206, 829 (2011).CrossRefGoogle Scholar
Carter, J., Fu, E., Bassiri, G., Dvorak, B., Theodore, N.D., Xie, G., Lucca, D., Martin, M., Hollander, M., and Zhang, X.: Effects of ion irradiation in metallic glasses. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1518 (2009).CrossRefGoogle Scholar
Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).CrossRefGoogle Scholar
Courty, A., Henry, A-I., Goubet, N., and Pileni, M-P.: Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals. Nat. Mater. 6, 900 (2007).CrossRefGoogle ScholarPubMed
Yu, K., Chen, Y., Li, J., Liu, Y., Wang, H., Kirk, M., Li, M., and Zhang, X.: Measurement of heavy ion irradiation induced in-plane strain in patterned face-centered-cubic metal films: An in situ study. Nano Lett. 16, 7481 (2016).CrossRefGoogle Scholar
Sun, C., Song, M., Yu, K.Y., Chen, Y., Kirk, M., Li, M., Wang, H., and Zhang, X.: In situ evidence of defect cluster absorption by grain boundaries in Kr ion irradiated nanocrystalline Ni. Metall. Mater. Trans. A 44, 1966 (2013).CrossRefGoogle Scholar
Bai, X-M., Voter, A.F., Hoagland, R.G., Nastasi, M., and Uberuaga, B.P.: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).CrossRefGoogle ScholarPubMed
El-Atwani, O., Nathaniel, J.E., Leff, A.C., Hattar, K., and Taheri, M.L.: Direct observation of sink-dependent defect evolution in nanocrystalline iron under irradiation. Sci. Rep. 7, 1836 (2017).CrossRefGoogle ScholarPubMed
Tschopp, M.A., Solanki, K.N., Gao, F., Sun, X., Khaleel, M.A., and Horstemeyer, M.F.: Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe. Phys. Rev. B 85, 064108 (2012).CrossRefGoogle Scholar
Chen, D., Wang, J., Chen, T., and Shao, L.: Defect annihilation at grain boundaries in alpha-Fe. Sci. Rep. 3, 1450 (2013).CrossRefGoogle ScholarPubMed
Voorhees, P.W.: The theory of Ostwald ripening. J. Stat. Phys. 38, 231 (1985).CrossRefGoogle Scholar
Rhines, F.N., Craig, K.R., and DeHoff, R.T.: Mechanism of steady-state grain growth in aluminum. Metall. Trans. 5, 413 (1974).CrossRefGoogle Scholar
Zhang, J.Y., Liu, G., and Sun, J.: Self-toughening crystalline Cu/amorphous Cu–Zr nanolaminates: Deformation-induced devitrification. Acta Mater. 66, 22 (2014).CrossRefGoogle Scholar
Zhang, J.Y., Liu, G., and Sun, J.: Crystallization-aided extraordinary plastic deformation in nanolayered crystalline Cu/amorphous Cu–Zr micropillars. Sci. Rep. 3, 2324 (2013).CrossRefGoogle ScholarPubMed
Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).CrossRefGoogle Scholar

Fan et al. supplementary material

Fan et al. supplementary material 1

Download Fan et al. supplementary material(Video)
Video 25.4 MB

Fan et al. supplementary material

Fan et al. supplementary material 2

Download Fan et al. supplementary material(Video)
Video 13.5 MB