Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T06:40:01.442Z Has data issue: false hasContentIssue false

An extended x-ray absorption fine structure study of rare-earth phosphate glasses near the metaphosphate composition

Published online by Cambridge University Press:  31 January 2011

R. Anderson
Affiliation:
School of Physical Sciences, The University of Kent, Canterbury, CT2 7NR, United Kingdom
T. Brennan
Affiliation:
School of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
J. M. Cole*
Affiliation:
School of Physical Sciences, The University of Kent, Canterbury, CT2 7NR, United Kingdom
G. Mountjoy
Affiliation:
School of Physical Sciences, The University of Kent, Canterbury, CT2 7NR, United Kingdom
D. M. Pickup
Affiliation:
School of Physical Sciences, The University of Kent, Canterbury, CT2 7NR, United Kingdom
R. J. Newport
Affiliation:
School of Physical Sciences, The University of Kent, Canterbury, CT2 7NR, United Kingdom
G. A. Saunders
Affiliation:
School of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
*
a)Address all correspondence to this author. Present address: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom. e-mail: [email protected]
Get access

Abstract

A variable-temperature (79, 145, and 293 K) extended x-ray absorption fine structure study, using rare-earth LIII absorption edges, is reported for phosphate glasses doped with rare-earth elements (R, where R = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er) with compositions close to metaphosphate, R(PO3)3. The results yield nearest-neighbor R–O distances that demonstrate the lanthanide contraction in a glassy matrix and an R–O coordination intermediate between 6 and 7 for rare-earth ions with smaller atomic number (Z) and 6 for rare-earth ions with larger Z. Thermal parameters show no significant changes in R–O distances or coordination numbers between 293 and 79 K. There is evidence of an R–P correlation between 3.3 and 3.6 Å and the beginning of a second R–O correlation at approximately 4 Å. No R–R correlations up to a distance of approximately 4 Å were observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Carini, G., Angelo, G.D., Tripodo, G., Fontana, A., Rossi, F., and Saunders, G.A., Europhys. Lett. 40, 435 (1997).CrossRefGoogle Scholar
2.Carini, G., D'Angelo, G., Tripodo, G., Bartolotta, A., Fontana, A., Rossi, F., and Saunders, G.A., Philos. Mag. B 77, 449 (1998).CrossRefGoogle Scholar
3.Farok, H.M., Senin, H.B., Saunders, G.A., Poon, W., and Vass, H., J. Mater. Sci. 29, 2847 (1994).CrossRefGoogle Scholar
4.Sidek, H.A.A, Saunders, G.A., Hampton, R.N., Draper, R.C.J, and Bridge, B., Philos. Mag. Lett. 57, 49 (1988).CrossRefGoogle Scholar
5.Acet, M., Brennan, T., Cankurtaran, M., Saunders, G.A., and Zähres, H., Philos. Mag. B 77, 1633 (1998).CrossRefGoogle Scholar
6.Karpov, V.G., Klinger, M.I., and Ignatiev, F.N., Sov. Phys. JETP 57, 439 (1983).Google Scholar
7.Karpov, V.G. and Parshin, D.A., JETP Lett. 38, 648 (1983).Google Scholar
8.Carini, G., D'Angelo, G., Tripodo, G., Fontana, A., Leonardi, A., Saunders, G.A., and Brodin, A., Phys. Rev. B 52, 9342 (1995).CrossRefGoogle Scholar
9.Bowron, D.T., Newport, R.J., Rainford, B.D., Saunders, G.A., and Senin, H.B., Phys. Rev. B 51, 5739 (1995).CrossRefGoogle Scholar
10.Bowron, D.T., Bushnell-Wye, G., Newport, R.J., Rainford, B.D., and Saunders, G.A., J. Phys.: Condens. Matter 8, 3337 (1996).Google Scholar
11.Bowron, D.T., Saunders, G.A., Newport, R.J., Rainford, B.D., and Senin, H.B., Phys. Rev. B 53, 5268 (1996).CrossRefGoogle Scholar
12.Anderson, R., Brennan, T., Mountjoy, G., Newport, R.J., and Saunders, G.A., J. Non-Cryst. Solids 232–234, 286 (1998).CrossRefGoogle Scholar
13.Hong, H.Y-P., Acta Crystallogr. B30, 468 (1974).CrossRefGoogle Scholar
14.Hong, H.Y-P., Acta Crystallogr. B30, 1857 (1974).CrossRefGoogle Scholar
15.Matuszewski, J., Kropiwnicka, J., and Znamierowska, T., J. Solid State Chem. 75, 285 (1988).CrossRefGoogle Scholar
16.Mierzejewski, A., Saunders, G.A., Sidek, H.A.A, and Bridge, B., J. Non-Cryst. Solids 104, 323 (1988).CrossRefGoogle Scholar
17.Binsted, N., Campbell, J.W., Gurman, S.J., and Stephenson, P.C., CCLRC Daresbury Laboratory EXCURV92 program (1991).Google Scholar
18.Sayers, D.E., Stern, E.A., and Lytle, F.W., Phys. Rev. Lett. 27, 1204 (1971).CrossRefGoogle Scholar
19.Li, G.G., Bridges, F., and Booth, C.H., Phys. Rev. B 52, 6332 (1995).CrossRefGoogle Scholar
20.Mustre de Leon, J., Rehr, J.J., Zabinsky, S.I., and Albers, R.C., Phys. Rev. B 44, 4146 (1991).CrossRefGoogle Scholar
21.Gurman, S.J., Binsted, N., and Ross, I., J. Phys. C: Solid State Phys. 17, 143 (1984).CrossRefGoogle Scholar
22.Gurman, S.J., Binsted, N., and Ross, I., J. Phys. C: Solid State Phys. 19, 1845 (1986).CrossRefGoogle Scholar
23.Crozier, E.D., Nucl. Instrum. Methods Phys. Res., Sect. B 133, 134 (1997).CrossRefGoogle Scholar
24.Zabinsky, S.I., Rehr, J.J., Ankudinov, A., Albers, R.C., and Eller, M.J., Phys. Rev. B 52, 2995 (1995).CrossRefGoogle Scholar
25.Kuzmin, A. and Grisenti, R., Philos. Mag. B 70, 1161 (1994).CrossRefGoogle Scholar
26.Stern, E.A. and Kim, K., Phys. Rev. B 23, 3781 (1981).CrossRefGoogle Scholar
27.Chaboy, J., Marcelli, A., and Tyson, T.A., Phys. Rev. B 49, 11652 (1994).CrossRefGoogle Scholar
28.Mosselmanns, J.F.W, Daresbury Laboratory, United Kingdom (personal communication).Google Scholar
29.Shannon, R.D., Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
30.Farok, H.M., Saunders, G.A., Poon, W., and Vass, H., J. Non-Cryst. Solids 142, 175 (1992).CrossRefGoogle Scholar
31.Hoppe, U., Kranold, R., Stachel, D., Barz, A., and Hannon, A.C., J. Non-Cryst. Solids 232–234, 44 (1998).CrossRefGoogle Scholar
32.Wang, J., Brocklesby, W.S., Lincoln, J.R., Townsend, J.E., and Payne, D.N., J. Non-Cryst. Solids 163, 261 (1993).CrossRefGoogle Scholar
33.Durif, A., Crystal Chemistry of Condensed Phosphates (Plenum Press, New York, 1995).CrossRefGoogle Scholar
34.Cannas, M., Manca, E., Pinna, G., Speghini, A., and Bettinelli, M., Z. Naturforsch. 53a, 919 (1998).CrossRefGoogle Scholar
35.Hoppe, U., J. Non-Cryst. Solids 195, 138 (1996).CrossRefGoogle Scholar
36.Dalba, G., Fornasini, P., Gotter, R., Grazioli, M., and Rocca, F., Philos. Mag. B 71, 751 (1995).CrossRefGoogle Scholar
37.Bianconi, A., Di Cicco, A., Pavel, N.V., Benfatto, M., Marcelli, A., Natoli, C.R., Pianetta, P., and Woicik, J., Phys. Rev. B. 36, 6426 (1987).CrossRefGoogle Scholar
38.Mountjoy, G., Anderson, R., Bowron, D.T., and Newport, R.J., J. Non-Cryst. Solids 232–234, 227 (1998).CrossRefGoogle Scholar
39.Wang, Q., Saunders, G.A., Lamsdon, E.F., Bayot, V., and Michenaud, J-P., J. Non-Cryst. Solids 125, 287 (1990).CrossRefGoogle Scholar