Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:32:30.009Z Has data issue: false hasContentIssue false

An embedded-atom method interatomic potential for Pd–H alloys

Published online by Cambridge University Press:  31 January 2011

X.W. Zhou*
Affiliation:
Mechanics of Materials Department, Sandia National Laboratories, Livermore, California 94550
J.A. Zimmerman
Affiliation:
Mechanics of Materials Department, Sandia National Laboratories, Livermore, California 94550
B.M. Wong
Affiliation:
Materials Chemistry Department, Sandia National Laboratories, Livermore, California 94550
J.J. Hoyt
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Palladium hydrides have important applications. However, the complex Pd–H alloy system presents a formidable challenge to developing accurate computational models. In particular, the separation of a Pd–H system to dilute (α) and concentrated (β) phases is a central phenomenon, but the capability of interatomic potentials to display this phase miscibility gap has been lacking. We have extended an existing palladium embedded-atom method potential to construct a new Pd–H embedded-atom method potential by normalizing the elemental embedding energy and electron density functions. The developed Pd–H potential reasonably well predicts the lattice constants, cohesive energies, and elastic constants for palladium, hydrogen, and PdHx phases with a variety of compositions. It ensures the correct hydrogen interstitial sites within the hydrides and predicts the phase miscibility gap. Preliminary molecular dynamics simulations using this potential show the correct phase stability, hydrogen diffusion mechanism, and mechanical response of the Pd–H system.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lasser, R.Tritium and Helium-3 in Metals, Vol. 9, Springer-Verlag Berlin 1989CrossRefGoogle Scholar
2Hydrogen in Metals, edited by G. Alefeld and J. Völkl, Vol. 1 Springer-Verlag Berlin 1978Google Scholar
3Hydrogen in Metals, edited by G. Alefeld and J. Völkl, Vol. 2 Springer-Verlag Berlin 1978Google Scholar
4Transition Metal Hydrides, edited by E.L. Muetterties Marcel Dekker New York 1971Google Scholar
5Mueller, W.M., Blackledge, J.P., Libowitz, G.G.: Metal Hydrides Academic Press New York 1968Google Scholar
6Fukai, Y.The Metal-Hydrogen System, Vol. 21, Springer-Verlag Berlin 1993CrossRefGoogle Scholar
7Povel, R., Feucht, K., Gelse, W., Withalm, G.: Hydrogen fuel for motorcars. Interdiscip. Sci. Rev. 14(4), 365 1989CrossRefGoogle Scholar
8Ortman, M.S., Heung, L.K., Nobile, A., Rabun, R.L.: Tritium processing at the Savannah River site—Present and future. J. Vac. Sci. Technol., A 8(3), 2881 1990CrossRefGoogle Scholar
9Heung, L.K.: Heat transfer and kinetics of a metal hydride reactor. Z. Phys. Chem. Neue Folge 164, 1415 1989CrossRefGoogle Scholar
10Ortman, M.S., Warren, T.J., Smith, D.J.: Use of metal hydrides for handling tritium. Fusion Technol. 8(2), 2330 1985CrossRefGoogle Scholar
11Anisimkin, V.I., Kotelyanskii, I.M., Verardi, P., Verona, E.: Elastic properties of thin film palladium for surface-acoustic-wave (SAW) sensors. Sens. Actuators, B 23(2–3), 203 1995CrossRefGoogle Scholar
12Nygren, L.A., Leisure, R.G.: Elastic constants of α′-Phase PdHx over the temperature range 4–300 K. Phys. Rev. B 37(11), 6482 1988CrossRefGoogle ScholarPubMed
13Hsu, D.K., Leisure, R.G.: Elastic constants of palladium and β-phase palladium hydride between 4 and 300 K. Phys. Rev. B 20(4), 1339 1979CrossRefGoogle Scholar
14Lucas, A.A.: Helium in metals. Phys. B + C (Amsterdam) . 127(1–3), 225 1984Google Scholar
15Thiebaut, S., Decamps, B., Penisson, J.M., Limacher, B., Guegan, A.P.: TEM study of the aging of palladium-based alloys during tritium storage. J. Nucl. Mater. 277(2–3), 217 2000CrossRefGoogle Scholar
16Cawthorne, C., Fulton, E.J.: Voids in irradiated stainless steel. Nature 216(5115), 575, 1967Google Scholar
17Abell, G.C., Attalla, A.: NMR studies of aging effects in palladium tritide. Fusion Technol. 14(2), 643 1988CrossRefGoogle Scholar
18Goods, S.H., Guthrie, S.E.: Mechanical properties of palladium and palladium hydride. Scripta Metall. Mater. 26, 561 1992CrossRefGoogle Scholar
19Walters, R.T., Lee, M.W.: 2 plateaus for palladium hydride and the effect of helium from tritium decay on the desorption plateau pressure for palladium tritide. Mater. Char. 27(3), 157 1991CrossRefGoogle Scholar
20Andreasen, G., Visintin, A., Salvarezza, R.C., Triaca, W.E., Arvia, A.J.: Hydrogen induced deformation of metals followed by in situ scanning tunneling microscopy, palladium electrolytic hydrogen charging and discharging in alkaline solution. Langmuir 15(1), 1 1999CrossRefGoogle Scholar
21Daw, M.S., Baskes, M.I.: Embedded atom method—Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443 1984CrossRefGoogle Scholar
22Daw, M.S., Baskes, M.I.: Semiempirical quantum mechanical calculations of hydrogen embrittlement in metals. Phys. Rev. Lett. 50(17), 1285 1983CrossRefGoogle Scholar
23Foiles, S.M., Baskes, M.I., Daw, M.S.: Embedded atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33(12), 7983 1986CrossRefGoogle ScholarPubMed
24Zhong, W., Li, Y.S., Tomanek, D.: Effect of adsorbates on surface phonon modes—H on Pd(001) and Pd(110). Phys. Rev. B 44(23), 13053 1991CrossRefGoogle Scholar
25Wolf, R.J., Lee, M.W., Davis, R.C., Fay, P.J., Ray, J.R.: Pressure–composition isotherms for palladium hydride. Phys. Rev. B 48(17), 12415 1993CrossRefGoogle ScholarPubMed
26Wolf, R.J., Mansour, K.A., Lee, M.W., Ray, J.R.: Temperature dependence of elastic constants of embedded-atom models of palladium. Phys. Rev. B 46(13), 8027 1992CrossRefGoogle ScholarPubMed
27 R.J. Wolf, P.J. Fay, and J.R. Ray (private communication 2002Google Scholar
28Zhou, X.W., Wadley, H.N.G., Johnson, R.A., Larson, D.J., Tabat, N., Cerezo, A., Petford-Long, A.K., Smith, G.D.W., Clifton, P.H., Martens, R.L., Kelly, T.F.: Atomic scale structure of sputtered metal multilayers. Acta Mater. 49(19), 4005 2001CrossRefGoogle Scholar
29Zou, W., Wadley, H.N.G., Zhou, X.W., Johnson, R.A., Brownell, D.: Surfactant mediated growth of giant magnetoresistance multilayers. Phys. Rev. B 64(17), 174418 2001CrossRefGoogle Scholar
30Ruda, M., Farkas, D., Abriata, J.: Embedded atom interatomic potentials for hydrogen in metals and intermetallic alloys. Phys. Rev. B 54(14), 9765 1996CrossRefGoogle ScholarPubMed
31Zhou, X.W., Johnson, R.A., Wadley, H.N.G.: Misfit energy increasing dislocations in vapor deposited CoFe/NiFe multilayers. Phys. Rev. B 69(14), 144113 2004CrossRefGoogle Scholar
32Foiles, S.M., Hoyt, J.J.Computer Simulation of Bubble Growth in Metals Due to He Sandia National Laboratories 2001CrossRefGoogle Scholar
33Rose, J.H., Smith, J.R., Guinea, F., Ferrante, J.: Universal features of the equation of state of metals. Phys. Rev. B 29(6), 2963 1984CrossRefGoogle Scholar
34Zimmerman, J.A.Computer Simulation of Boundary Effects on Bubble Growth in Metals Due to He Sandia National Laboratories 2003CrossRefGoogle Scholar
35 ParaDyn, 2007, available online at http://www.cs.sandia.gov/~sjplimp/.Google Scholar
36Johnson, R.A.: Alloy models with the embedded atom method. Phys. Rev. B 39(17), 12554 1989CrossRefGoogle ScholarPubMed
37Foiles, S.M.: Application of the embedded atom method to liquid transition metals. Phys. Rev. B 32(6), 3409 1985CrossRefGoogle ScholarPubMed
38Finnis, M.W., Sinclair, J.E.: A simple empirical N body potential for transition metals. Philos. Mag. A 50(1), 45 1984CrossRefGoogle Scholar
39Prince, A.: Alloy Phase Equilibria Elsevier Publishing Co. Amsterdam 1966CrossRefGoogle Scholar
40Richard, A.S.: Thermodynamics of Solids John Wiley & Sons New York 1972Google Scholar
41Schwarz, R.B., Bach, H.T., Harms, U., Tuggle, D.: Elastic properties of Pd–hydrogen, Pd–deuterium, and Pd–tritium single crystals. Acta Mater. 53(3), 569 2005CrossRefGoogle Scholar
42International Critical Tables of Numerical Data Physics, Chemistry and Technology 1st ed. National Research Council, edited by E.W. Washburn and C.J. West, Vol. 7, McGraw-Hill Book Co. New York 1930Google Scholar
43CRC Handbook of Chemistry and Physics CRC Press Cleveland, OH 1977Google Scholar
44Caputo, R., Alavi, A.: Where do the H atoms reside in PdHx systems? Mol. Phys. 101(11), 1781 2003CrossRefGoogle Scholar
45 Wolfram Research Inc., 2007, available online at: http://www.wolfram.com/products/mathematica/index.html.Google Scholar
46Sakamoto, Y., Yuwasa, K., Hirayama, K.: X-ray investigation of the absorption of hydrogen by several palladium and nickel solid solution alloys. J. Less-Comm. Metals 88, 115 1982CrossRefGoogle Scholar
47Fukai, Y., Sugimoto, H.: Diffusion of hydrogen in metals. Adv. Phys. 34(2), 263 1985CrossRefGoogle Scholar