Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T23:42:01.276Z Has data issue: false hasContentIssue false

An electron microscopy study of the atomic structure of a mullite in a reaction-sintered composite

Published online by Cambridge University Press:  31 January 2011

D. Schryvers
Affiliation:
National Center for Electron Microscopy, MCSD, Lawrence Berkeley Laboratory and Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720
K. Srikrishna
Affiliation:
National Center for Electron Microscopy, MCSD, Lawrence Berkeley Laboratory and Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720
M. A. O'Keefe
Affiliation:
National Center for Electron Microscopy, MCSD, Lawrence Berkeley Laboratory and Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720
G. Thomas
Affiliation:
National Center for Electron Microscopy, MCSD, Lawrence Berkeley Laboratory and Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720
Get access

Abstract

The mullite matrix of a reaction-sintered mullite/zirconia composite has been characterized by various electron microscopy techniques. The mullite was determined to be stoichiometrically Al4.76Si1.23O9.61 (1.7:1 mullite) with a disordered vacancy structure and Pbam symmetry. The atomic structure of the mullite has been described in terms of an average unit cell.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1See, for instance, Proceedings of the First International Conference on Mullite, Tokyo, Japan, November 1987.Google Scholar
2Sadanaga, R., Tokénami, M., and Takeuchi, Y., Acta Cryst. 15, 65 (1962).CrossRefGoogle Scholar
3Cameron, W. E., Am. Mineral. 62, 747 (1977).Google Scholar
4Melo, M. F., Moya, J. S., Pena, P., and Aza, S. de, J. Mater. Sci. 20, 2711 (1985).CrossRefGoogle Scholar
5Srikrishna, K., Thomas, G., and Moya, J. S., Science and Technology of Zirconia III, Advances in Ceramics (American Ceramic Society, Columbus, OH) Vol. 24 (in press).Google Scholar
6Kilaas, R., Proceedings of the 45th Annual Meeting of the Electron Microscopy Society of America (G. W. Bailey, San Fransisco, CA, 1987), pp. 6669.Google Scholar
7Buxton, B. F., Eades, J. A., Steeds, J. W., and Rackham, G. M., Philos. Trans. R. Soc. London 281, 171 (1976).Google Scholar
8Gjønnes, J. and Moodie, A. F., Acta Cryst. 19, 65 (1965).CrossRefGoogle Scholar
9Ylä-Jääski, J. and Nissen, H.-U., Phys. Chem. Miner. 10, 47 (1983).CrossRefGoogle Scholar
10Nakajima, Y., Morimoto, N., and Watanabe, E., Proc. Jpn. Acad. 51, 173 (1975).CrossRefGoogle Scholar
11Angel, R. J. and Prewitt, C. T., Am. Mineral. 71, 1476 (1986).Google Scholar
12Angel, R. J. and Prewitt, C. T., Acta Cryst. B 43, 116 (1987).CrossRefGoogle Scholar
13Burnham, C. W., Carnegie Inst. Washington Yearb. 63, 227 (1963).Google Scholar
14Agrell, S. O. and Smith, J. V., J. Am. Ceram. Soc. 43, 69 (1960).CrossRefGoogle Scholar
15Eberhard, E., Rahman, S. H., and Weichert, H. T., Z. Kristallogr. 174(1-4), 44 (1986).Google Scholar