Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T17:29:03.457Z Has data issue: false hasContentIssue false

An atomistic study of brittle fracture: Toward explicit failure criteria from atomistic modeling

Published online by Cambridge University Press:  03 March 2011

Peter Gumbsch
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, 70174 Stuttgart, Germany
Get access

Abstract

Atomistic techniques are used to study brittle fracture under opening mode and mixed mode loading conditions. The influence of the discreteness of the lattice and of the lattice-trapping effect on crack propagation is studied using an embedded atom potential for nickel to describe the crack tip. The recently developed FEAt (Finite Element-Atomistic) coupling scheme provides the atomistic core region with realistic boundary conditions. Several crystallographically distinct crack-tip configurations are studied and commonly reveal that brittle cracks under general mixed mode loading situations follow an energy criterion (G-criterion) rather than an opening-stress criterion (Kl-criterion). However, if there are two competing failure modes, they seem to unload each other, which leads to an increase in lattice trapping. Blunted crack tips are studied in the last part of the paper and are compared to the atomically sharp cracks. Depending on the shape of the blunted crack tip, the observed failure modes differ significantly and can drastically disagree with what one would anticipate from a continuum mechanical analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Thomson, R., Hsieh, C., and Rana, V., J. Appl. Phys. 42, 3154 (1971).CrossRefGoogle Scholar
2Sinclair, J.E., Philos. Mag. 31, 647 (1975).CrossRefGoogle Scholar
3Sinclair, J.E. and Lawn, B.R., Proc. R. Soc. London A 329, 83 (1972).Google Scholar
4Mullins, M. and Dokainish, M. A., Philos. Mag. A 46, 71 (1982).CrossRefGoogle Scholar
5Kohlhoff, S., Gumbsch, P., and Fischmeister, H.F., Philos. Mag. A 64, 851 (1991).CrossRefGoogle Scholar
6Thomson, R., Zhou, S. J., Carlsson, A. E., and Tewary, V. K, Phys. Rev. B 46, 10613 (1992).CrossRefGoogle Scholar
7Cheung, K.S. and Yip, S., Phys. Rev. Lett. 65, 2804 (1990).CrossRefGoogle Scholar
8Cheung, K. S., Argon, A. S., and Yip, S., J. Appl. Phys. 69, 2088 (1991).CrossRefGoogle Scholar
9Hoagland, R.G., Daw, M.S., and Hirth, J.P., J. Mater. Res. 6, 2565 (1991).CrossRefGoogle Scholar
10Zhou, S.J., Carlsson, A. E., and Thomson, R., Phys. Rev. B 47, 7710 (1993).CrossRefGoogle Scholar
11Zhou, S.J., Carlsson, A.E., and Thomson, R., Phys. Rev. Lett. 72, 852 (1994).CrossRefGoogle Scholar
12Abraham, F. F., Brodbeck, D., Rafey, R. A., and Rudge, W. E., Phys. Rev. Lett. 73, 272 (1994).CrossRefGoogle Scholar
13Sill, G.C. and Liebowitz, H., in Fracture, edited by Liebowitz, H. (Academic Press, New York, 1968), Vol. 2, Chap. 2, pp. 67190.Google Scholar
14Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
15Thomson, R., in Solid State Physics, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, New York 1986), Vol. 39, pp. 1129.Google Scholar
16Sinclair, J.E. and Finnis, M. W., in Atomistics of Fracture, edited by Latanision, R. M. and Pickens, J. R. (Plenum Press, New York, 1983), pp. 10471053.CrossRefGoogle Scholar
17Anderson, P.M. and Thomson, R., J. Appl. Phys. 76, 843 (1994).CrossRefGoogle Scholar
18Rice, J.R., J. Mech. Phys. Solids 40, 239 (1992).CrossRefGoogle Scholar
19Schoeck, G., Philos. Mag. A 63, 111 (1991).CrossRefGoogle Scholar
20Rice, J.R. and Beltz, G.E., J. Mech. Phys. Solids 42, 333 (1994).CrossRefGoogle Scholar
21Gumbsch, P. and Beltz, G.E., unpublished.Google Scholar
22Kröner, E., Int. J. Solids Structures 3, 731 (1967).CrossRefGoogle Scholar
23Daw, M.S., Foiles, S.M., and Baskes, M.I., Mater. Sci. Rep. 9, 251 (1993).CrossRefGoogle Scholar
24Paxton, A. T., Gumbsch, P., and Methfessel, M., Philos. Mag. Lett. 63, 267 (1991).CrossRefGoogle Scholar
25Baskes, M.I. and Daw, M.S., in Proceedings of the 4th International Conference on the Effect of Hydrogen on the Behavior of Materials (The Minerals, Metals and Materials Society, Warrendale, PA, 1990).Google Scholar
26Mullins, M., Int. J. Fracture 24, 189 (1984).CrossRefGoogle Scholar
27Rice, J. R., in Fracture, edited by Liebowitz, H. (Academic Press, New York, 1968), Vol. 2, Chap. 3, pp. 191311.Google Scholar
28Sun, Y. and Beltz, G.E., J. Mech. Phys. Solids 42, 1905 (1994).CrossRefGoogle Scholar
29Fuller, J.E.R. and Thomson, R., Fracture 1977 3, 387 (1977).Google Scholar
30Lawn, B., Fracture of Brittle Solids, end ed. (University Press, Cambridge, UK, 1993).CrossRefGoogle Scholar
31Paskin, A., Massoumzadeh, B., Shukla, K., Sieradzki, K., and Dienes, G. J., Acta Metall. 33, 1987 (1985).CrossRefGoogle Scholar