Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T08:27:08.557Z Has data issue: false hasContentIssue false

An analysis of high temperature (1150 °C) furnace annealing of buried oxide wafers formed by ion implantation

Published online by Cambridge University Press:  31 January 2011

S. R. Wilson
Affiliation:
Semiconductor Research and Development Laboratories, Semiconductor Products Sector, Motorola, Inc., 5005 East McDowell Road, Phoenix, Arizona 85008
M. E. Burnham
Affiliation:
Semiconductor Research and Development Laboratories, Semiconductor Products Sector, Motorola, Inc., 5005 East McDowell Road, Phoenix, Arizona 85008
M. Kottke
Affiliation:
Semiconductor Research and Development Laboratories, Semiconductor Products Sector, Motorola, Inc., 5005 East McDowell Road, Phoenix, Arizona 85008
R. P. Lorigan
Affiliation:
Semiconductor Research and Development Laboratories, Semiconductor Products Sector, Motorola, Inc., 5005 East McDowell Road, Phoenix, Arizona 85008
S. J. Krause
Affiliation:
Department of Chemical and Materials Engineering, Arizona State University, Tempe, Arizona 85287
C. O. Jung
Affiliation:
Department of Chemical and Materials Engineering, Arizona State University, Tempe, Arizona 85287
J. A. Leavitt
Affiliation:
Department of Physics, University of Arizona, Tucson, Arizona 85721
L. C. McIntyre Jr.
Affiliation:
Department of Physics, University of Arizona, Tucson, Arizona 85721
J. Seerveld
Affiliation:
Department of Physics, University of Arizona, Tucson, Arizona 85721
P. Stoss
Affiliation:
Department of Physics, University of Arizona, Tucson, Arizona 85721
Get access

Abstract

Silicon-on-insulator films were formed by ion implantation of oxygen and were treated with various annealing cycles at peak temperatures of 1150 °C, 1200 °C, and 1250 °C in a conventional diffusion furnace. The objective of this study was to examine the structural effects on samples with similar oxygen diffusion lengths (from 17 to 33 μm) achieved by annealing at different times and temperatures. The oxygen and silicon distributions, as well as the residual damage and precipitate size and distribution, were measured by Auger electron microscopy, Rutherford backscattering spectroscopy, and transmission electron microscopy. In agreement with previous findings, higher temperatures produced a larger and less defective, “precipitate-free” superficial Si region. The buried oxide layer thickened from 0.33 μm to a maximum of 0.43 μm as some precipitates were incorporated into the buried oxide while others adjacent to the buried oxide grew in size (up to 47 nm) and decreased in relative number. A new result of this systematic study of annealing conditions was that the peak temperature has a greater effect on the morphology and crystal quality of the superficial Si structure than does time at temperature. Structural changes for longer anneals at 1150 °C are not equivalent to shorter anneals at 1250 °C even though the diffusion length of oxygen for these treatments is the same.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lam, H. W., Tasch, A. F., and Pinnizzotto, R. J., “Silicon on Insulator for VLSI and VHSIC,” in VLSI Electronics Microstructure Science, edited by Einspruch, Norman G. (Academic Press, New York, 1982), Vol. 4, p. 1.Google Scholar
2Burnham, M.E. and Wilson, S. R., Proc. Soc. Photo-Opt. Instrum. Eng.-Int. Soc. Opt. Eng. 530, 240 (1985).Google Scholar
3Izumi, K., Omura, Y., and Nakashima, S., Energy Beam Solid Interactions and Transient Thermal Processing, edited by Fan, John C.C. and Johnson, Noble M. (Elsevier North Holland, New York, 1984) p. 443.Google Scholar
4Nesbit, L., Slusser, G., Frennette, R., and Halbach, R., J. Electrochem. Soc. 133, 1186 (1986).CrossRefGoogle Scholar
5Hemment, P. L. F., Peart, R. F., Yao, M. F., Stephens, K. G., Arrowsmith, R. P., Chater, R.J., and Kilner, J. A., Nucl. Instrum. Methods B6, 292 (1985).CrossRefGoogle Scholar
6Marsh, C.D., Booker, G. R., Reeson, K.J., Hemment, P. L. F., Chater, R.J., Alderman, J. A., and Celler, G., Eur. Mat. Res. Soc. Symp. Proc. R 12, 137 (1987).Google Scholar
7Hemment, P.L.F., Reeson, K.J., Kilner, J.A., Chater, R.J., Marsh, C., Booker, G. R., Celler, G. K., and Stoemenos, J., Vacuum 36, 877 (1986).CrossRefGoogle Scholar
8Hemment, P. L. F., Semiconductor-on-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M. W., and Pfeiffer, L. (Materials Research Society, Pittsburgh, PA, 1986), p. 207.Google Scholar
9Tuppen, C. G., Taylor, M. R., Hemment, P. L. F., and Arrowsmith, R. P., Appl. Phys. Lett. 45, 57 (1985).CrossRefGoogle Scholar
10Wilson, S.R. and Fathy, D., J. Electron. Mater. 13, 127 (1984).CrossRefGoogle Scholar
11Holland, O.W., Fathy, D., Narayan, J., Sjoreen, T.P., and Wilson, S.R., J. Non-Crystalline Sol. 71, 163 (1985).CrossRefGoogle Scholar
12Krause, S. J., Jung, C. O., and Wilson, S. R., Proc. of the Fifth International Symposium on Silicon Materials Science and Technology–Semiconductor Silicon 1986, edited by Huff, Howard R. and Abe, Takao (Electrochemical Society, Kennington, NJ, 1986), p. 642.Google Scholar
13Pinizzotto, Russell F., Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R., and White, C. W. (Elsevier North Holland, New York, 1984), p. 265.Google Scholar
14Mogro-Campero, A., Love, R. P., Lewis, N., Hall, E. L., and McConnell, M.D., Ion Beam Processes in Advanced Electron Materials and Device Technology, edited by Eisen, F. H., Sigmon, T. W., and Appleton, B.R. (Materials Research Society, Pittsburgh, PA, 1985), p. 305.Google Scholar
15Pinizzotto, R.F., Vaandrager, B.L., Matteson, S., Lam, H. W., Mahli, S.D. S., Hamdi, A. H., and McDaniel, F. D., IEEE Trans, on Nucl. Sci. NS30, 1722 (1983).Google Scholar
16Tuppen, C. G., Taylor, M. R., Hemment, P. L. F., and Arrowsmith, R. P., Thin Solid Films 131, 233 (1985).CrossRefGoogle Scholar
17Celler, G.K., Hemment, P. L. F., West, K. W., and Gibson, J. M., Appl. Phys. Lett. 48, 532 (1986).CrossRefGoogle Scholar
18Mao, B.-Y., Chang, P.-H., Lam, H. W., Shen, B.W., and Keenan, J.A., Appl. Phys. Lett. 48, 794 (1986).CrossRefGoogle Scholar
19Jaussaud, C., Stoemenos, J., and Margail, J., Appl. Phys. Lett. 46, 1064 (1985).CrossRefGoogle Scholar
20Mogro-Campero, A., Love, R. P., Leis, N., Hall, E. L., and McConnell, M.D., J. Appl. Phys. 60, 2103 (1986).CrossRefGoogle Scholar
21Stoemenos, J., Jaussaud, C., Bruel, M., and Margail, J., J. Cryst. Growth 73, 546 (1985).CrossRefGoogle Scholar
22Bruel, M., Margail, J., Stoemenos, J., Martin, P., and Jaussaud, C., Vacuum 35, 589 (1985).CrossRefGoogle Scholar
23Batstone, J. L., White, A.E., Short, K.T., Gibson, J. M., and Jacobson, D.C., Proc. Mat. Res. Soc. 74, 597 (1987).CrossRefGoogle Scholar
24Parry, P.D., J. Vac. Sci. Technol. 13, 622 (1975).CrossRefGoogle Scholar
25Parry, P. D., J. Vac. Sci. Technol. 15, 111 (1978).CrossRefGoogle Scholar
26Tuppen, C. G., Davies, G. J., Taylor, M. R., and Heckingbottom, R., Thin Films and Interfaces II, edited by Baglin, J. E. E., Campbell, D. R., and Chu, W. K. (Elsevier North Holland, New York, 1984), p. 537.Google Scholar
27Reeson, K.J., Nucl. Inst. Meths. B19/20, 269 (1987).CrossRefGoogle Scholar
28Chater, R.J., Kilner, J.A., Hemment, P. L.F., Reeson, K.J., and Peart, R.F., Proc. Electro. Chem. Soc. 84-4, 652 (1986).Google Scholar
29Nakashima, S., Akiya, M., and Kato, K., Elec. Lett. 19, 568 (1983).CrossRefGoogle Scholar
30Krause, S.J., Jung, C. O., Wilson, S.R., Burnham, M. E., and Lorigan, R. P., Semiconductor-on-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M. W., and Pfeiffer, L. (Materials Research Society, Pittsburgh, PA, 1986), p. 257.Google Scholar
31Kennedy, E. F., Csepregi, L., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4241 (1977).CrossRefGoogle Scholar
32Craven, Robert, Proc. of the Fourth International Symposium on Silicon Materials Science and Technology–Semiconductor Silicon 1981, edited by Huff, Howard R. and Kreigler, Rudolph J. (Electrochemical Society, Pennington, NJ), p. 254.Google Scholar
33Wada, Kazumi and Inoue, Naohisa, J. Crystal Growth 49, 749 (1980).CrossRefGoogle Scholar
34Newman, R.C., Binns, M. J., Brown, W. P., Livingston, F. M., Messoloras, S., Stewart, R. J., and Wilkes, J. G., Physica 116B, 264 (1983).Google Scholar
35Tiller, W. A., Hahn, S., and Ponce, F., J. Appl. Phys. 59, 3255 (1986).CrossRefGoogle Scholar
36Maillet, S., Stuck, R., and Grab, J.J., Nucl. Inst. Meths. B19/20, 294 (1987).CrossRefGoogle Scholar
37White, A. E., Short, K. T., Batstone, J. L., Jacobson, D. C., Poate, J. M., and West, K. W., Appl. Phys. Lett. 50, 19 (1987).CrossRefGoogle Scholar