Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T01:56:45.221Z Has data issue: false hasContentIssue false

Amorphization phenomenon in Ni/amorphous Si multilayers

Published online by Cambridge University Press:  03 March 2011

W.H. Wang
Affiliation:
Institute of Physics, Academia Sinica, Beijing 100080, China
W.K. Wang
Affiliation:
International Center for Materials Physics, Academia Sinica, Shenyang 110015, China and Institute of Physics, Academia Sinica, Beijing 100080, China
Get access

Abstract

Interfacial reactions of Ni/amorphous Si(a-Si) multilayers are studied by means of transmission electron microscopy (TEM) and cross-sectional transmission electron microscopy (XTEM). Transformation from a crystalline to an amorphous structure has been observed in as-deposited Ni/a-Si multilayers with small modulation periods. This phenomenon is suggested to be due to interdiffusion-induced solid state amorphization which is facilitated by the high density of interface in the shorter modulation period multilayers. A thermodynamic and kinetic explanation is given for this phenomenon.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
2Bene, R. W., J. Appl. Phys. 61, 1826 (1987).CrossRefGoogle Scholar
3Holloway, K., Sinclair, R., and Nathan, M., J. Vac. Sci. Technol. A 7, 1479 (1989).CrossRefGoogle Scholar
4Nathan, M., J. Appl. Phys. 63, 5534 (1988).CrossRefGoogle Scholar
5Gong, S. F., Hentzell, H. T. G, and Robertsson, A. E., J. Appl. Phys. 64, 1457 (1988).CrossRefGoogle Scholar
6Li, B-Z., Zhang, A. M., and Jiang, G. B., J. Appl. Phys. 66, 5416 (1989).CrossRefGoogle Scholar
7Wang, W. H., Bai, H. Y., Zhang, Y., and Wang, W. K., J. Appl. Phys. 73, 4313 (1993).CrossRefGoogle Scholar
8Wang, W. H., Bai, H. Y., Zhang, Y., Chen, H., and Wang, W. K., J. Appl. Phys. 73, 7217 (1993).CrossRefGoogle Scholar
9Landers, J., Sauer, C., Kabius, B., and Zinn, W., Phys. Rev. B 44, 8342 (1991).CrossRefGoogle Scholar
10Khan, M. R., Chun, C.S.L., Felcher, G. P., Grimsditch, M., Kueny, A., Falco, C. M., and Schuller, I. K., Phys. Rev. B 27, 7186 (1983).CrossRefGoogle Scholar
11Clemens, B. M., J. Less-Comm. Met. 140, 57 (1988).CrossRefGoogle Scholar
12Seyffert, M., Siber, A., and Ziemann, P., Phys. Rev. Lett. 67, 3792 (1991).CrossRefGoogle Scholar
13Wang, W. H., Bai, H. Y., Chen, H., Zhang, Y., and Wang, W. K., Thin Solid Films 232, 282 (1993).CrossRefGoogle Scholar
14Nakajima, H., Lkebe, M., Muto, Y., and Fujimori, H., J. Appl. Phys. 65, 1637 (1989).CrossRefGoogle Scholar
15Bai, H. Y., Chen, H., Zhang, Y., and Wang, W. K., Phys. Status Solidi A 137, 125 (1993).CrossRefGoogle Scholar
16Wang, W. H., Bai, H. Y., and Wang, W. K., J. Appl. Phys. 74, 2471 (1993).CrossRefGoogle Scholar
17Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987).CrossRefGoogle Scholar
18Nathan, M., J. Appl. Phys. 63, 5534 (1988).CrossRefGoogle Scholar
19Clemens, B. M. and Sinclair, R., Mater. Res. Bull. XV (22), 19 (1990).CrossRefGoogle Scholar
20Van Gurp, G. J., Sigurd, D., and Vanderwe, W. F., Appl. Phys. Lett. 29, 159 (1976).CrossRefGoogle Scholar
21Clevenger, L. A. and Thompson, C. V., J. Appl. Phys. 67, 1325 (1990).CrossRefGoogle Scholar
22Mey, S., Z. Metallk. 77, 805 (1986).Google Scholar
23Miller, W. A. and Chadwick, G. A., Acta Metall. 15, 609 (1967).Google Scholar
24Spaepen, F., Acta Metall. 23, 729 (1975).CrossRefGoogle Scholar
25Schwarz, R. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
26Chu, W. K., Krautle, H., Mayer, J. W., Muller, H., Nicolet, M. A., and Tu, K. N., Appl. Phys. Lett. 25, 454 (1974).CrossRefGoogle Scholar