Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:12:42.398Z Has data issue: false hasContentIssue false

Amorphization of elemental and compound semiconductors upon ion implantation

Published online by Cambridge University Press:  31 January 2011

K.S. Jones
Affiliation:
214 Rhines Hall, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
C.J. Santana
Affiliation:
214 Rhines Hall, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Get access

Abstract

Cross-sectional TEM studies of ion implantation induced amorphization in a large number of semiconductors have been performed. Samples of Si, AlAs, GaAs, GaP, GaSb, InP, InAs, and ZnSe were simultaneously implanted at 77 K with 20 keV Si+ at doses between 1 × 1014/cm2 and 1 × 1016/cm2. A dose of 1 × 1015/cm2 minimized the ion beam induced epitaxial crystallization and sputtering effects. The depth of the amorphous layer at this dose was compared with Monte Carlo damage density distribution calculations (TRIM'90). The threshold damage density (TDD) necessary for amorphization was determined for each compound. The values of the threshold damage density vary from as low as 2.4 × 1019 keV/cm3 for InAs up to 7.3 × 1020 keV/cm3 for AlAs. ZnSe never became amorphous and GaSb exhibited an unusual disordering after the highest dose. The values of the threshold damage density for the various compositions were compared with known thermochemical data and several bond energy estimates. No single calculation explained all of the trends observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Wang, Kou-Wei, Spitzer, William G., Hubler, Graham K., and Sadana, Devendra K., J. Appl. Phys. 58, 4553 (1985).CrossRefGoogle Scholar
2Kelly, Roger, Nucl. Instrum. Methods 182/183, 351 (1981).CrossRefGoogle Scholar
3Poate, J. S. and Williams, J. M., Ion Implantation and Beam Processing (Academic Press, New York, 1984).Google Scholar
4Elliman, R. G., Williams, J. S., Brown, W. L., Leiberich, A., Maher, D. M., and Knoell, R. V., Nucl. Instrum. Methods in Physics Research B19/20, 435 (1987).CrossRefGoogle Scholar
5Prussin, S., Margolese, David I., and Tanber, Richard N., J. Appl. Phys. 57, 180 (1985).CrossRefGoogle Scholar
6Kirichenko, L. G. and Petrenko, V. F., Sov. Phys. Solid State 28, 275 (1986).Google Scholar
7Maszara, W. P. and Rozgonyi, G. A., J. Appl. Phys. 60, 2310 (1986).CrossRefGoogle Scholar
8Jones, K. S., Prussin, S., and Weber, E. R., Appl. Phys. A 45, 1 (1988).CrossRefGoogle Scholar
9Sadana, D. K., Nucl. Instrum. Methods in Physics Research B7/8, 375 (1985).CrossRefGoogle Scholar
10Sadana, D. K., Choksi, H., Washburn, J., Byrne, P. F., and Cheung, N. W., Appl. Phys. Lett. 44, 301 (1984).CrossRefGoogle Scholar
11Kular, S. S., Sealy, B. J., Stephens, K. G., Sadana, D., and Booker, G. R., Solid-State Electron. 23, 831 (1980).CrossRefGoogle Scholar
12Licoppe, C., Nissim, Y. I., Krauz, P., and Henoc, P., Appl. Phys. Lett. 49, 316 (1986).CrossRefGoogle Scholar
13Williams, J. S. and Austin, M. W., Appl. Phys. Lett. 36, 994 (1980).CrossRefGoogle Scholar
14Nissim, Y. I., Christel, L. A., Sigmon, T. W., Gibbons, J. F., Magee, T. J., and Ormond, R., Appl. Phys. Lett. 39, 598 (1981).CrossRefGoogle Scholar
15Licoppe, C., Nissim, Y. I., and Meriadec, C., J. Appl. Phys. 58, 3094 (1985).CrossRefGoogle Scholar
16Pearton, S. J., Poate, J. M., Sette, F., Gibson, J. M., Jacobson, D. C., and Williams, J. S., Nucl. Instrum. Methods in Physics Research B19/20, 369 (1987).CrossRefGoogle Scholar
17Dobisz, E. A., Tell, B., Craighead, H. G., and Tamargo, M. C., J. Appl. Phys. 60, 4150 (1986).CrossRefGoogle Scholar
18Schwarz, S. A., Venkatesan, T., Hwang, D. M., Yoon, H. W., Bhat, R., and Arakawa, Y., Appl. Phys. Lett. 50, 281 (1987).CrossRefGoogle Scholar
19Wesch, W., Wendler, E., and Gotz, G., J. Appl. Phys. 65, 519 (1989).CrossRefGoogle Scholar
20Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 49, 3906 (1978).CrossRefGoogle Scholar
21Brice, D. K., Ion Implantation Range and Energy Deposition Distributions (Plenum Press, New York, 1975), p. 1.Google Scholar
22Christel, L. A., Gibbons, J. F., and Mylroie, S., J. Appl. Phys. 51, 6176 (1980).CrossRefGoogle Scholar
23Ziegler, J. F. and Biersack, J. P., The Stopping and Range of Solids (Pergamon Press, New York, 1985).Google Scholar
24Christel, L. A., Gibbons, J. F., and Sigmon, T. W., J. Appl. Phys. 52, 7143 (1981).CrossRefGoogle Scholar
25Pearton, S. J., Hobson, W. S., and Jones, K. S., J. Appl. Phys. 66, 5009 (1989).CrossRefGoogle Scholar
26Danilov, Y. A. and Tulochikov, V. S., Sov. Phys. of Semiconductors 14, 117 (1980).Google Scholar
27Wilson, R. G. (personal communications).Google Scholar
28Sands, T., Sadana, D. K., Grousky, R., and Washburn, J., Appl. Phys. Lett. 44, 874 (1984).CrossRefGoogle Scholar
29Phillips, J. C. and Van, J. A.Vechten, Phys. Rev. B 2, 2147 (1970).CrossRefGoogle Scholar
30Opyd, W. G., Gibbons, J. F., Bravman, J. C., and Parker, M. A., Appl. Phys. Lett. 49, 974 (1986).CrossRefGoogle Scholar
31Pauling, L., The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1960).Google Scholar
32Van, J. A.Vechten, Phys. Rev. 187, 1007 (1969).Google Scholar
33Van, J. A.Vechten, Phys. Rev. B 7, 1479 (1973).Google Scholar
34Sanderson, R. T., J. Am. Chem. Soc. 105, 2259 (1983).CrossRefGoogle Scholar
35Sanderson, R. T., Chemical Bonds and Bond Energy (Academic Press, New York, 1971).Google Scholar
36Swanson, M. C., Parsons, J. R., and Hoelke, C. W., Radiat. Eff. 9, 249 (1971).CrossRefGoogle Scholar
37Licoppe, C., Nissim, Y. I., Meriadec, C., Henoc, P., and d'Anterroches, C., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M.O., Picraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 385.Google Scholar
38Williams, J. M., McHargue, C. J., and Appleton, B. R., Nucl. Instrum. Methods 209/210, 317 (1983).CrossRefGoogle Scholar