Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T23:41:12.892Z Has data issue: false hasContentIssue false

Am3+ and Eu3+ /alkali cation exchange selectivity on mordenite and zeolite L

Published online by Cambridge University Press:  31 January 2011

Masamichi Tsuji
Affiliation:
Tokyo Institute of Technology, Research Center for Carbon Recycling and Utilization, Ookayama, Meguro-ku, Tokyo 152–8552, Japan
Hitoshi Mimura
Affiliation:
Tohoku University, Institute for Advanced Materials Processing, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577, Japan
Get access

Abstract

Am3+ and Eu3+ /alkali cation exchange selectivity was studied on mordenite and zeolite L at 25 to 60 °C to examine the effect of their openings of ion-exchange sites. The corrected selectivity coefficient at the infinitesimal exchange increased in the order of Eu3+ < Am3+ on mordenite and Am3+ < Eu3+ on zeolite L. The selectivity reversal did not reflect the effect of the ionic form, but reflected the dimension of the opening of the ion-exchange site and charge of trivalent cations, since the crystal ionic radii of alkali cations were much smaller than the openings of these zeolites (7–8 Å).

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Komarneni, S. and Tsuji, M., J. Am. Ceram. Soc. 72, 1668 (1989).CrossRefGoogle Scholar
2.Tsuji, M. and Komarneni, S., Sep. Sci. Technol. 26, 647 (1991).CrossRefGoogle Scholar
3.Tsuji, M. and Komarneni, S., Sep. Sci. Technol. 27, 813 (1992).CrossRefGoogle Scholar
4.Barrer, R.M., in Natural Zeolites, Occurrence, Properties, Use, edited by Sand, L.B. and Mumpton, F.A. (Pergamon, New York, 1978), p. 385.Google Scholar
5.Barrer, R.M. and Klinowski, J., J. Chem. Soc., Faraday Trans. 1 70, 2080 (1974).Google Scholar
6.Harjula, R., Dyer, A., and Pearson, S.D., J. Chem. Soc., Faraday Trans. 88, 1591 (1992).CrossRefGoogle Scholar
7.Kemner, K.M., Hunter, D.B., Bertsch, P.M., Kirkland, J.P., and Elam, W.T., J. Phys. IV 7, C2777 (1997).Google Scholar
8.Schnidegger, A.M., Lamble, G.M., and Sparks, D.L., J. Phys. IV 7, C2777 (1997).Google Scholar
9.Inorganic Ion Exchange Materials, edited by A. Clearfield (CRC Press, Inc., Boca Raton, FL, 1982).Google Scholar
10.New Developments in Ion Exchange, edited by M. Abe, T. Kataoka, and T. Suzuki (Kodansha, Tokyo, Japan, 1991).Google Scholar
11.Tsuji, M. and Komarneni, S., J. Mater. Res. 4, 698 (1989).CrossRefGoogle Scholar
12.Komarneni, S. and Tsuji, M., J. Am. Ceram. Soc. 72, 1668 (1989).CrossRefGoogle Scholar
13.Tsuji, M. and Abe, M., Bull. Chem. Soc. Jpn. 58, 1109 (1985).CrossRefGoogle Scholar
14.Tsuji, M., Komarneni, S., Tamaura, Y., and Abe, M., Mater. Res. Bull. 27, 741 (1992).CrossRefGoogle Scholar
15.Breck, D.W., Zeolite Molecular Sieves (Robert E. Krieger Publishing Co., Malabar, FL, 1974), p. 156.Google Scholar
16.Tsuji, M., Kaneko, H., Abe, M., Morita, Y., and Kubota, M., Radiochim. Acta 60, 93 (1993).CrossRefGoogle Scholar
17.Yamagishi, I., Morita, Y., Kubota, M., and Tsuji, M., Radiochim. Acta 75, 27 (1996).CrossRefGoogle Scholar
18.Mimura, H., Ishihara, Y., and Akiba, K., J. Nucl. Sci. Technol. 28, 144 (1991).CrossRefGoogle Scholar
19.Mimura, H. and Akiba, K., Bull. Res. Inst. Miner. Dressing Metall., Tohoku Univ. 43, 23 (1987).Google Scholar
20.Stammose, D., Ly, J., Pitsch, H., and Dolo, J-M., Appl. Clay Sci. 7, 225 (1992).CrossRefGoogle Scholar
21.Aja, S.U., Clays Clay Mineral. 46, 103 (1998).CrossRefGoogle Scholar
22.Tsuji, M. and Komarneni, S., J. Mater. Res. 8, 3145 (1993).CrossRefGoogle Scholar
23.Lide, D.R. (Editor-in-Chief), Handbook of Chemistry and Physics 76th ed. (CRC Press, Boca Raton, FL, 1995).Google Scholar
24.Dobos, D., Electrochemical Data (Elsevier Scientific Publishing Co., Amsterdam, The Netherlands, 1975), p. 190.Google Scholar
25.Glueckauf, E., Nature 163, 414 (1949).CrossRefGoogle Scholar
26.Tsuji, M., Kaneko, H., and Tamaura, Y., J. Chem. Soc., Faraday Trans. 89, 851 (1993).CrossRefGoogle Scholar
27.Shannon, R.D., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
28.Kaneko, H., Tsuji, M., Abe, M., Morita, Y., and Kubota, M., J. Nucl. Sci. Technol. 29, 988 (1992).CrossRefGoogle Scholar
29.Tsuji, M. and Komarneni, S., J. Mater. Res. 8, 611 (1993).CrossRefGoogle Scholar
30.Goloshan-Shiraji, S. and Guiochon, G., J. Phys. Chem. 93, 4143 (1989).CrossRefGoogle Scholar
31.Myers, A.L. and Byington, S., in Ion Exchange: Science and Technology, edited by Rodrigues, A.E. (Martinus Nijhoff, Dordrecht, The Netherlands, 1986), p. 119.CrossRefGoogle Scholar
32.Tondeur, D. and Grevillot, G., in Ion Exchange: Science and Technology, edited by Rodrigues, A.E. (Martinus Nijhoff, Dordrecht, The Netherlands, 1986), p. 369.CrossRefGoogle Scholar
33.Clifford, D., in Fundamentals and Applications of Ion Exchange, NATO ASI Series, edited by Liberti, L. and Miller, J.R. (Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1985), p. 312.Google Scholar
34.The Chemistry of Actinide Elements, 2nd ed., edited by J.J. Katz, G.T. Seaborg, and L.R. Morss (Chapman and Hall, New York, 1986), Vol. 2 p. 912.Google Scholar
35.Kaneko, H., Tsuji, M., and Tamaura, Y., Solvent Extr. Ion Exch. 11(4), 693 (1993).CrossRefGoogle Scholar
36.Ellis, D.E. and Guo, J., in Density Functional Theory of Molecules, Clusters, and Solids, edited by Ellis, D.E. (Kluwer Academic Publishers, Norwell, MA, 1995), p. 263.Google Scholar