Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T21:09:19.338Z Has data issue: false hasContentIssue false

Aluminum and Ni–silicide lateral reactions

Published online by Cambridge University Press:  31 January 2011

Joyce C. Liu
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
J. W. Mayer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

The Al–Ni2Si reactions were studied in lateral diffusion couples containing Al islands on Ni–Si multiple layers. The samples were first in situ annealed in a transmission electron microscope at a temperature of 370°C for 5 min to form the Ni2Si phase in the multiple-layer area. Then they were in situ annealed at temperatures ranging from 498–545 °C. During the second-step anneal, a sequential formation of Al3Ni, Al3Ni2, and Ni3Si2 was observed. After the nucleation of the third phase (Ni3Si2), the three phases grew simultaneously with time. The lateral growth of Al3Ni and Al3Ni2 is a result of the Al diffusion and the Al–Ni silicide reactions; the lateral growth of Ni3Si2 is caused by the diffusion of Si atoms dissociated from the silicides.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hosack, H. H., J. Appl. Phys. 44, 3476 (1973).CrossRefGoogle Scholar
2Köster, U., Ho, P. S., and Lewis, J. E., J. Appl. Phys. 53, 7436 (1982).CrossRefGoogle Scholar
3Ho, P.O., Lewis, J.E., and Köster, U., J. Appl. Phys. 53, 7445 (1982).CrossRefGoogle Scholar
4Liu, Joyce C. and Mayer, J.W., J. Mater. Res. 4, 336 (1989).CrossRefGoogle Scholar
5Kökelek, E. and Robinson, G.Y., Thin Solid Films 53, 135 (1978).Google Scholar
6van Gurp, G. J., Daams, J. L. C., van Oostrom, A., Augustus, L. J. M., and Tamminga, Y., J. Appl. Phys. 50, 6915 (1979).Google Scholar
7Nicolet, Marc-A. and Lau, S. S., in VLSI Electronics: Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic, New York, 1983), Vol. 6, Chap. 6.Google Scholar
8Goldstein, J. I., Williams, D. B., and Cliff, G., in Principles of Analytical Electron Microscopy, edited by Joy, D. C., Romig, A. D., and Goldstein, J.I. (Plenum, New York, 1986), Chap. 5.Google Scholar
9Barbour, J. C., Sickafus, K., and Nastasi, M., J. Vac. Sci. Technol. A3, 1895 (1985).Google Scholar
10Liu, Joyce C., Barbour, J. C., and Mayer, J.W., J. Appl. Phys. 64, 656 (1988).CrossRefGoogle Scholar
11Janssen, M. M. P. and Dieck, G. D., Trans. AIME 239, 1372 (1967).Google Scholar
12Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry, 5th ed. (Pergamon, Oxford, 1979).Google Scholar
13Beyers, R., J. Appl. Phys. 56, 147 (1984).Google Scholar
14Colgan, E. G., Nastasi, M., and Mayer, J.W., J. Appl. Phys. 58, 4125 (1985).CrossRefGoogle Scholar
15Mondolfo, L. F., Aluminum Alloys: Structure and Properties (Butterworth's, London, 1976), p. 604.Google Scholar
16Hansen, M., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 133.Google Scholar
17Wittmer, Marc, Appl. Phys. Lett. 52, 1573 (1988).Google Scholar
18Schmalzried, H., Solid State Reactions (Academic, New York, 1974), p. 116.Google Scholar
19Chen, S.H., Zheng, L.R., Carter, C.B., and Mayer, J.W., J. Appl. Phys. 57, 258 (1985).CrossRefGoogle Scholar