Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T12:41:27.807Z Has data issue: false hasContentIssue false

Alumina powders via a controlled precipitation of aluminum acetate

Published online by Cambridge University Press:  31 January 2011

A. Ayral
Affiliation:
Laboratoire de Science des Matériaux Vitreux, Université de Montpellier II, 34060, Montpellier Cedex, France
J. C. Droguet
Affiliation:
Baikowski-Chimie BP22 74001, Annecy Cedex, France
Get access

Abstract

A new method of producing alumina powder is described. Aluminum basic acetate is first synthesized from alkoxide precursor. The chemical reactions which control the precipitation of this salt are followed, using IR spectroscopy. Alumina powder is obtained by further thermal decomposition, and the thermal evolution of the precipitate is studied.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Barringer, E., Jubb, N., Fegley, B., Pober, R.L., and Bowen, H.K., Ultrastruct. Process. Ceram. Gl. Ceram., edited by Hench, L. L. and Ulrich, D. R. (J. Wiley Publishers, New York, 1983), pp. 316, 333.Google Scholar
2Stober, W., Fink, A., and Bonn, E., J. Colloid. Interf. Sc. 26, 62 (1968).CrossRefGoogle Scholar
3Tan, C.G., Bowen, B.D., and Epstein, N., J. Colloid. Interf. Sc. 118 (1), 290 (1987).CrossRefGoogle Scholar
4Bogush, G. H., Tracy, M. A., and Zukoski, C. F. IV , J. Non-Cryst. Solids 104, 95 (1988).CrossRefGoogle Scholar
5Fegley, B., White, P., and Bowen, H. K., Am. Ceram. Soc. Bull. 64 (8), 1115 (1985).Google Scholar
6Ogihara, T., Muzitani, N., and Kato, M., Ceram. Inter. 13, 35 (1987).CrossRefGoogle Scholar
7Barringer, E. A. and Bowen, H.K., J. Am. Ceram. Soc. 65 (12), C199 (1982).CrossRefGoogle Scholar
8Ikemoto, T., Vematsu, K., Mizutani, N., and Kato, M., Yogyo Kyokai Shi. 93 (5), 261 (1985).CrossRefGoogle Scholar
9Heistand, R. and Chia, Y. H., in Better Ceramics through Chemistry II (Mat. Res. Soc. Proc. , 1986), Vol. 73, pp. 93, 98.Google Scholar
10Ogihara, T., Ikemoto, T., Muzitani, N., and Kato, M., J. Mat. Sc. 21 (8), 2771 (1986).CrossRefGoogle Scholar
11Ogihara, T., Kaneko, H., Muzitani, N., and Kato, M., J. Mat. Sc. Lett. 7, 867 (1988).CrossRefGoogle Scholar
12Blendell, J.E., Bowen, H.K., and Coble, R.L., Am. Ceram. Soc. Bull. 63 (6), 797 (1984).Google Scholar
13Gray, V.R. and Alexander, A.E., J. Phys. Chem. 53 (1), 23 (1949).CrossRefGoogle Scholar
14Ayral, A., Thesis, Montpellier (France) (1988).Google Scholar
15Thompson, H. W. and Torkington, P., J. Chem. Soc., 640 (1945).CrossRefGoogle Scholar
16Maksimov, V. N., Semenenko, K.N., Naumova, T. N., and Novoselova, A. V., Russ. J. Inorg. Chem. 5 (3), 267 (1960).Google Scholar
17Ayral, A. and Phalippou, J., Adv. Ceram. Mater. 3 (6), 575 (1988).CrossRefGoogle Scholar
18Hood, G. C. and Ihde, A. J., J. Am. Chem. Soc. 72, 2094 (1950).CrossRefGoogle Scholar
19Sato, T., Ikoma, S., and Ozawa, F., Thermochim. Acta 75, 129 (1984).CrossRefGoogle Scholar
20Rai, A. K. and Mehrotra, R. C., J. Indian Chem. Soc. 40 (5), 359 (1963).Google Scholar