Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T16:04:15.281Z Has data issue: false hasContentIssue false

Alumina aerogel catalysts prepared by two supercritical drying methods used in methane combustion

Published online by Cambridge University Press:  03 March 2011

Yasuyuki Mizushima*
Affiliation:
Colloid Research Institute, 350–1 Ogura, Yahatahigashi-ku, Kitakyushu 805, Japan
Makoto Hori*
Affiliation:
Colloid Research Institute, 350–1 Ogura, Yahatahigashi-ku, Kitakyushu 805, Japan
*
a)Present address: Nagoya Division, Superconductivity Research Laboratory, International Superconductivity Technology Center, (c/o) Japan Fine Ceramic Center, 4–1 Mutsuno, 2-Chome, Atsuta-ku, Nagoya 456, Japan.
b)Present address: Kurosaki Refractories Co., Ltd., 1–1, Higashihama, Yawata-nishi, Kitakyushu 806, Japan.
Get access

Abstract

Palladium-supported alumina aerogels were prepared by two different supercritical drying methods. In one method, an alumina wet gel was dried under supercritical conditions of ethanol in an autoclave. In the other, the aerogel was supercritically dried by extracting ethanol using carbon dioxide in an extractor. The Pd-supported alumina aerogel prepared in the autoclave exhibited a high specific surface area of 112.8 m2/g after firing at 1200 °C for 5 h, while the other had a specific surface area of only 5.2 m2/g due to α-alumina transformation. Their catalytic properties for methane combustion were measured. The Pd-supported alumina aerogel prepared in the autoclave combusts methane perfectly at 50–60 °C lower temperature than the other. Palladium particles on the alumina aerogel prepared in the autoclave contained palladium oxide, while those prepared in the CO2 extractor contained only palladium metal.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1G. G. E. Gardes, Pajonk, G. M., and Teichner, S. J., Bull. Soc. Chim. Fr., 1321 (1976).Google Scholar
2Sayari, A., Ghorbel, A., Pajonk, G. M., and Teichner, S.J., Bull.Soc. Chim. Fr., 220 (981).Google Scholar
3Abouramadasse, S., Pajonk, G. M., and Teichner, S.J., in Adas Xe Simposia Iberoamerica.no de Catalysis, Merida, Venezuela (1986), Vol. II, p. 615.Google Scholar
4Chouki, J., Chavarie, C., Klvana, D., and Pajonk, G. M., Powder Technol. 43, 117 (1985).CrossRefGoogle Scholar
5Gesser, H. D. and Goswami, P. C., Chem. Rev. 89, 765 (1989).CrossRefGoogle Scholar
6Teichner, S.J., Nicolaon, G. A., Vicarini, M. A., and Gardes, G. E. E., Adv. Colloid Interface Sci. 5, 245273 (1976).CrossRefGoogle Scholar
7Mizushima, Y. and Hori, M., J. Non-Cryst. Solids 167, 1 (1994).CrossRefGoogle Scholar
8Mizushima, Y. and Hori, M., Appl. Catal. 88, 137 (1992).CrossRefGoogle Scholar
9Sadamori, H. and Chikazawa, A., Nenryokyokaishi 67, 834 (1988).Google Scholar
10Pfefferle, L. D. and Pfefferle, W. C., Catal. Rev. Sci. 29, (1987).Google Scholar
11Machida, M., Eguchi, K., and Arai, H., J. Catal. 103, 385 (1987).CrossRefGoogle Scholar
12Bradley, D. C., Mehrotra, R. C., and Gaur, D.P., Metal Alkoxides (Academic Press, London, 1978), p. 306.Google Scholar
13Ishikawa, T., Ohashi, R., Nakabayshi, H., Kakuta, N., Ueno, A., and Furuta, A., J. Catal. 134, 87 (1992).CrossRefGoogle Scholar
14Ito, T., Shokubai 24, 8 (1982).Google Scholar
15IUPAC, Pure Appl. Chem. 67, 603 (1985).Google Scholar
16Sadamori, H., PETROTECH 12, 819 (1989).Google Scholar
17Ruckenstein, E. and Dadyburjor, D. B., Rev. Chem. Eng. 1, 251 (1983).CrossRefGoogle Scholar
18Klimisch, R. L., Summers, J. C., and Schlatter, J.C., Adv. Chem. Ser., 143 (1973).Google Scholar
19Ichikawa, M., Chemtech, 674 (1982).Google Scholar
20Mazda, S. and Yamashita, H., Shokubai 29, 293 (1987).Google Scholar