Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T12:12:45.011Z Has data issue: false hasContentIssue false

Alternative Chemical Route to Mesoporous Titania From a Titanatrane Complex

Published online by Cambridge University Press:  03 March 2011

Chavalit Trakanprapai
Affiliation:
Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
Vincenzo Esposito
Affiliation:
Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
Silvia Licoccia
Affiliation:
Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
Enrico Traversa*
Affiliation:
Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-purity, mesoporous titania was prepared by reaction of dimethylaminotitanatrane, [NMe2–Ti(OCH2CH2)3N] in the presence of micellar aggregates as templating agents followed by thermal treatments in the temperature range 350–450 °C. The powders were characterized by nitrogen adsorption–desorption isotherms, thermogravimetry–differential thermal analysis, Fourier transform infrared, field-emission scanning electron microscopy, and x-ray diffraction. Analysis of the morphological characteristics of titanium oxide powders calcined at 350 °C for 120 h and at 450 °C for 6 h showed the presence of a mesoporous structure, with an average pore size of about 3.5 nm. Firing temperatures above 450 °C caused the collapse of the mesoporous structure. Composite Nafion-based membranes, containing 5 wt% mesoporous titania fired at 450 °C as a filler were successfully prepared. Preliminary tests in a prototype direct methanol fuel cell demonstrated that the composite membrane allowed cell operation up to 145 °C, thus showing a significant performance improvement over pure Nafion.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Grätzel, M.: Sol-gel processed TiO2 films for photovoltaic applications. J. Sol-Gel Sci. Technol. 22, 7 (2001).CrossRefGoogle Scholar
2Tanaka, Y. and Suganuma, M.: Effects of heat treatment on photocatalytic property of sol-gel derived polycrystalline TiO2. J. Sol-Gel Sci. Technol. 22, 83 (2001).CrossRefGoogle Scholar
3Traversa, E., Di Vona, M.L., Licoccia, S., Sacerdoti, M., Carotta, M.C., Crema, L. and Martinelli, G.: Sol-gel processed TiO2-based nano-sized powders for use in thick-film gas sensors for atmospheric pollutant monitoring. J. Sol-Gel Sci. Technol. 22, 167 (2001).CrossRefGoogle Scholar
4Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. and Beck, J.S.: Ordered mesoporous. Molecular sieves synthesized by a liquid crystal template mechanism. Nature 359, 710 (1992).CrossRefGoogle Scholar
5Huo, Q., Margolese, D.I., Ciesla, U., Feng, P., Gier, T.E., Sieger, P., Leon, R., Petroff, P.M., Schüth, F. and Stucky, G.D.: Generalized syntheses of periodic surfactant/inorganic composite materials. Nature 368, 317 (1994).CrossRefGoogle Scholar
6Huo, Q., Margolese, D.I., Ciesla, U., Demuth, D.G., Feng, P., Gier, T.E., Sieger, P., Firouzi, A., Chmelka, B.F., Schüth, F. and Stucky, G.D.: Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater. 6, 1176 (1994).CrossRefGoogle Scholar
7Ciesla, U., Demuth, D., Leon, R., Petroff, P.M., Stucky, G.D., Unger, K. and Schüth, F.: Surfactant controlled preparation of mesostructured transition-metal oxide compounds. Chem. Comm. 1387 (1994).CrossRefGoogle Scholar
8Ciesla, U., Schacht, S., Stucky, G.D., Unger, K. and Schüth, F.: Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angew. Chem. Int. Ed. Engl. 35, 541 (1996).CrossRefGoogle Scholar
9Luca, V., MacLachlan, D.J., Hook, J.M. and Withers, R.: Synthesis and characterization of mesostructured vanadium oxide. Chem. Mater. 7, 2220 (1995).CrossRefGoogle Scholar
10Abe, T., Taguchi, A. and Iwamoto, M.: Non-silica-based mesostructured materials. 1. Synthesis of vanadium oxide-based materials. Chem. Mater. 7, 1429 (1995).CrossRefGoogle Scholar
11Antonelli, D.M. and Ying, J.Y.: Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew. Chem. Int. Ed. Engl. 34, 2014 (1995).CrossRefGoogle Scholar
12Stone, V.F., Davis, R.J. and Jr., : Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves. Chem. Mater. 10, 1468 (1998).CrossRefGoogle Scholar
13Sato, S., Oimatsu, S., Takahashi, R., Sodesawa, T. and Nozaki, F.: Pore size regulation of TiO2 by use of a complex of titanium tetraisopropoxide and stearic acid. Chem. Comm., 2219 (1997).CrossRefGoogle Scholar
14Yang, P., Zhao, D., Margolese, D.I., Chmelka, B. and Stucky, G.D.: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152 (1998).CrossRefGoogle Scholar
15Antonelli, D.M. and Ying, J.Y.: Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism. Angew. Chem. Int. Ed. Engl. 35, 426 (1996).CrossRefGoogle Scholar
16Behrens, P.: Voids in variable chemical surroundings: Mesoporous metal oxides. Angew. Chem. Int. Ed. Engl. 35, 515 (1996).CrossRefGoogle Scholar
17Fröba, M., Muth, O. and Reller, A.: Mesostructured TiO2: Ligand-stabilized synthesis and characterization. Solid State Ionics 101, 249 (1997).CrossRefGoogle Scholar
18Grosso, D., Soler-Illia, G., Babonneau, F., Sanchez, C., Albouy, P.A., Brunet, A. and Balkenende, A.R.: Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels. Adv. Mater. 13, 1085 (2001).3.0.CO;2-Q>CrossRefGoogle Scholar
19de Soler-Illia, G.J. A.A., Louis, A. and Sanchez, C.: Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly. Chem. Mater. 14, 750 (2002).CrossRefGoogle Scholar
20de Soler-Illia, G.J. A.A., Crépaldi, E., Grosso, D. and Sanchez, C.: Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid In. 8, 109 (2003).CrossRefGoogle Scholar
21Crepaldi, E., de Soler-Illia, G.J. A.A., Grosso, D. and Sanchez, C.: Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability. New J. Chem. 1, 9 (2003).CrossRefGoogle Scholar
22Amorós, P., Beltrán, A., Beltrán, D., Cabrera, S., El Haskouri, J., and Marcos, M.D., Spanish Patent, P200000787 (2000).Google Scholar
23Aricò, A.S., Srinivasan, S. and Antonucci, V.: DMFCs: From fundamental aspects to technology development. Fuel Cells 1, 133 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
24Yang, C., Srinivasan, S., Aricò, A.S., Cretì, P., Baglio, V. and Antonucci, V.: Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem. Solid St. A31(2001).Google Scholar
25Baglio, V., Di Biasi, A., Aricò, A.S., Antonucci, V., Antonucci, P.L., Fiory, F. Serraino, Licoccia, S. and Traversa, E.: Increasing the operating temperature of nafion membranes with addition of nanocrystalline oxides for direct methanol fuel cells, in Solid State Ionics—2002, edited by Knauth, P., Tarascon, J-M., Traversa, E., and Tuller, H.L. (Mater. Res. Soc. Symp. Proc. 756 Warrendale, PA, 2003), p. 345.Google Scholar
26Baglio, V., Di Biasi, A., Aricò, A.S., Antonucci, V., Antonucci, P.L., Fiory, F. Serraino, Licoccia, S. and Traversa, E.: Influence of TiO2 nanometric filler on the behaviour of a composite membrane for applications in direct methanol fuel cells J. New Mat. Elect. Sys. 5 2005, in press.Google Scholar
27Menge, W.M.P.B. and Verkade, J.G.: Monomeric and dimeric titanatrane. Inorg. Chem. 30, 4628 (1991).CrossRefGoogle Scholar
28Khushalani, D., Ozin, G.A. and Kuperman, A.: Glycometallate surfactants Part 2: Non-aqueous synthesis of mesoporous titanium, zirconium and niobium oxides. J. Mater. Chem. 9, 1491 (1999).CrossRefGoogle Scholar
29Jörissen, J., Gogel, V., Kerres, J. and Garche, J.: New membranes for direct methanol fuel cells. J. Power Sources 105, 267 (2002).CrossRefGoogle Scholar