Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T04:01:53.816Z Has data issue: false hasContentIssue false

All-chemical high-Jc YBa2Cu3O7 multilayers with SrTiO3 as cap layer

Published online by Cambridge University Press:  01 May 2006

A. Pomar*
Affiliation:
Institut de Ciència de Materials de Barcelona–CSIC, Campus de la UAB, 08193 Bellaterra, Spain
M. Coll
Affiliation:
Institut de Ciència de Materials de Barcelona–CSIC, Campus de la UAB, 08193 Bellaterra, Spain
A. Cavallaro
Affiliation:
Institut de Ciència de Materials de Barcelona–CSIC, Campus de la UAB, 08193 Bellaterra, Spain
J. Gàzquez
Affiliation:
Institut de Ciència de Materials de Barcelona–CSIC, Campus de la UAB, 08193 Bellaterra, Spain
J.C. González
Affiliation:
Institut de Ciència de Materials de Barcelona–CSIC, Campus de la UAB, 08193 Bellaterra, Spain
N. Mestres
Affiliation:
Institut de Ciència de Materials de Barcelona–CSIC, Campus de la UAB, 08193 Bellaterra, Spain
F. Sandiumenge
Affiliation:
Institut de Ciència de Materials de Barcelona–CSIC, Campus de la UAB, 08193 Bellaterra, Spain
T. Puig
Affiliation:
Institut de Ciència de Materials de Barcelona–CSIC, Campus de la UAB, 08193 Bellaterra, Spain
X. Obradors
Affiliation:
Institut de Ciència de Materials de Barcelona–CSIC, Campus de la UAB, 08193 Bellaterra, Spain
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We grew high-quality epitaxial YBa2Cu3O7 (YBCO) superconducting thin films by the trifluoroacetate route on top of chemical solution deposited SrTiO3 buffer layers. We show that high lattice mismatches can be accommodated in heterostructures grown by chemical methods. Clean interfaces were observed between the different layers. The influence of the buffer layer growth conditions on the final superconducting properties was studied in depth. We have proved that the main parameter affecting the YBCO critical currents is the SrTiO3 surface roughness, which promotes the nucleation of a/b axis grains and, as a consequence, the porosity of the YBCO film. On the other hand, an improved dependence of the critical current with perpendicular applied magnetic field was observed. This suggests a strengthened vortex pinning due to a higher density of a/b axis oriented grains.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, Y., Kakimoto, K., Yamada, Y., Izumi, T., Saitoh, T., Shiohara, Y.: Research and development of biaxially textured IBAD-GZO templates for coated superconductors. MRS Bull. 29(8)564 (2004).CrossRefGoogle Scholar
2.Rupich, M.W., Verebelyi, D.T., Zhang, W., Kodenkandath, T., Li, X.: Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull. 29(8)572 (2004).CrossRefGoogle Scholar
3.Phillips, J.M.: Substrate selection for high-temperature superconducting thin films. J. Appl. Phys. 79, 1829 (1996).CrossRefGoogle Scholar
4.Siegal, M.P., Clem, P.G., Dawley, J.T., Ong, R.J., Rodriguez, M.A., Overmyer, D.L.: All solution-chemistry approach for YBa2Cu3O7−δ-coated conductors. Appl. Phys. Lett. 80, 2710 (2002).CrossRefGoogle Scholar
5.Chung, J.K., Ko, R.K., Shi, D.Q., Ha, H.S., Kim, H., Song, K.K., Park, C., Moon, S.H., Yoo, S.I.: Use of SrTiO3 as a single buffer layer for RABiTS YBCO coated conductor. IEEE Trans. Appl. Supercond. 15, 3020 (2005).CrossRefGoogle Scholar
6.Wang, H., Foltyn, S.R., Arendt, P.N., Jia, Q.X., MacManus-Driscoll, J.L., Stan, L., Li, Y., Zhang, X., Dowden, P.C.: Microstructure of SrTiO3 buffer layers and its effects on superconducting properties of YBa2Cu3O7−δ coated conductors. J. Mater. Res. 19, 1869 (2004).CrossRefGoogle Scholar
7.Siegal, M.P., Clem, P.G., Dawley, J.T., Richardson, J., Overmyer, D.L.: Optimizing SrTiO3 films on textured Ni substrates using chemical solution deposition. J. Mater. Res. 20, 910 (2005).CrossRefGoogle Scholar
8.Zhu, X.B., Liu, S.M., Hao, H.R., Chen, L., Song, W.H., Sun, Y.P., Shi, K., Sun, Z.Y., Chen, S., Han, Z.: Preparation of SrTiO3 buffer layers on BaxSr1−xTiO3 seed layers buffered Ni tapes by chemical solution deposition. Physica C 411, 143 (2004).CrossRefGoogle Scholar
9.Zhu, X.B., Chen, L., Liu, S.M., Song, W.H., Sun, Y.P., Shi, K., Sun, Z.Y., Chen, S., Han, Z.: Effect of seed layers on the preparation of SrTiO3 buffer layers on Ni tapes via sol-gel method. Physica C 415, 57 (2004).CrossRefGoogle Scholar
10.Hühne, R., Holzapfel, B., Kursumovic, A., Evetts, J.E., Cavallaro, A., Sandiumenge, F., Pomar, A., Puig, T., Obradors, X.: Preparation of MZrO3 (M = Ba,Sr) Buffer layers on surface oxidized Ni/NiO templates by PLD and MOD. IEEE Trans. Appl. Supercond. 15, 3024 (2005).CrossRefGoogle Scholar
11.Matsumoto, K., Takechi, A., Ono, T., Hirabayashi, I., Osamura, K.: Effect of perovskite oxide cap layer on superconducting properties of YBa2Cu3Ox films grown on mechanically polished SOE substrates. Physica C 392, 830 (2003).CrossRefGoogle Scholar
12.Castaño, O., Cavallaro, A., Palau, A., Gonzalez, J.C., Rossell, M., Puig, T., Sandiumenge, F., Mestres, N., Piñol, S., Pomar, A., Obradors, X.: High-quality YBa2Cu3O7 thin films grown by trifluoroacetates metalorganic deposition. Supercond. Sci. Technol. 16, 45 (2003).CrossRefGoogle Scholar
13.Obradors, X., Puig, T., Pomar, A., Sandiumenge, F., Piñol, S., Mestres, N., Castaño, O., Coll, M., Cavallaro, A., Palau, A., Gazquez, J., Gonzalez, J.C., Gutierrez, J., Roma, N., Ricart, S., Moreto, J.M., Rossell, M.D., van Tendeloo, G.: Chemical solution deposition: a path towards low cost coated conductors. Supercond. Sci. Technol. 17, 1055 (2004).CrossRefGoogle Scholar
14.Puig, T., Gonzalez, J.C., Pomar, A., Mestres, N., Castaño, O., Coll, M., Gazquez, J., Sandiumenge, F., Piñol, S., Obradors, X.: Influence of growth conditions on the microstructure and critical currents of TFA-MOD YBa2Cu3O7 films. Supercond. Sci. Technol. 18, 1141 (2005).CrossRefGoogle Scholar
15.Gonzalez, J.C., Mestres, N., Puig, T., Gazquez, J., Sandiumenge, F., Obradors, X., Usoskin, A., Jooss, C., Freyhardt, H.C., Feenstra, R.: Biaxial texture analysis of YBa2Cu3O7-coated conductors by micro-Raman spectroscopy. Phys. Rev. B 70, 094525 (2004).CrossRefGoogle Scholar
16.Langjahr, P.A., Lange, F.F., Wagner, T., Ruhle, M.: Lattice mismatch accommodation in perovskite films on perovskite substrates. Acta Mater. 46, 773 (1998).CrossRefGoogle Scholar
17.Sandiumenge, F., Cavallaro, A., Gázquez, J., Puig, T., Obradors, X., Arbiol, J., Freyhardt, H.C.: Mechanisms of nanostructural and morphological evolution of CeO2 functional films by chemical solution deposition. Nanotechnology 16, 1809 (2005).CrossRefGoogle Scholar
18.Tamura, K., Yoshida, Y., Sudoh, K., Kurosaki, H., Matsunami, N., Hirabayashi, I., Takai, Y.: Influence of the microstructure of the SrTiO3 buffer layer on the superconducting properties of YBa2Cu3O7−x films. Physica C 357, 1386 (2001).CrossRefGoogle Scholar
19.Castaño, O., Cavallaro, A., Palau, A., Gonzalez, J.C., Rossell, M.D., Puig, T., Piñol, S., Mestres, N., Sandiumenge, F., Pomar, A., Obradors, X.: Influence of porosity on the critical currents of trifluoroacetate-MOD YBa2Cu3O7 films. IEEE Trans. Appl. Supercond. 13, 2504 (2003).CrossRefGoogle Scholar
20.Pomar, A., Díaz, A., Ramallo, M.V., Torrón, C., Veira, J.A., Vidal, F.: Measurements of the paraconductivity in the a-direction of untwinned Y1Ba2Cu3O7−δ single crystals. Physica C 218, 257 (1993).CrossRefGoogle Scholar
21.Díaz, A., Pomar, A., Domarco, G., Maza, J., Vidal, F.: Critical-current versus normal-state resistivity in granular Y1Ba2Cu3O7−δ. Appl. Phys. Lett. 63, 1684 (1993).CrossRefGoogle Scholar
22.Takechi, A., Matsumoto, K., Osamura, K.: Oxide buffer layer with perovskite structure for YBa2Cu3O7−x coated conductors prepared by metal-organic deposition method. IEEE Trans. Appl. Supercond. 13, 2551 (2003).CrossRefGoogle Scholar
23.Takechi, A., Matsumoto, K., Osamura, K.: YBa2Cu3O7−x films on oxide buffer layer with perovskite structure prepared by metal-organic deposition method. Physica C 392, 895 (2003).CrossRefGoogle Scholar
24.Dam, B., Huijbregtse, J.M., Klaassen, F.C., van der Geest, R.C.F., Doornbos, G., Rector, J.H., Testa, A.M., Freisem, S., Martinez, J.C., Stauble-Pumpin, B., Griessen, R.: Origin of high critical currents in YBa2Cu3O7−δ superconducting thin films. Nature 399, 439 (1999).CrossRefGoogle Scholar
25.Klaassen, F.C., Doornbos, G., Huijbregtse, J.M., van der Geest, R.C.F., Dam, B., Griessen, R.: Vortex pinning by natural linear defects in thin films of YBa2Cu3O7−δ. Phys. Rev. B 64, 184523 (2001).CrossRefGoogle Scholar
26.Civale, L., Maiorov, B., Serquis, A., Willis, J.O., Coulter, J.Y., Wang, H., Jia, Q.X., Arendt, P.N., MacManus-Driscoll, J.L., Maley, M.P., Foltyn, S.R.: Angular-dependent vortex pinning mechanisms in YBa2Cu3O7 coated conductors and thin films. Appl. Phys. Lett. 84, 2121 (2004).CrossRefGoogle Scholar
27.MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Maley, M.P., Peterson, D.E.: Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7 + BaZrO3. Nature Mat. 3, 439 (2004).CrossRefGoogle ScholarPubMed
28.Huijbregtse, J.M., Dam, B., van der Geest, R.C.F., Klaassen, F.C., Elberse, R., Rector, J.H., Griessen, R.: Natural strong pinning sites in laser-ablated YBa2Cu3O7−δ thin films. Phys. Rev. B 62, 1338 (2000).CrossRefGoogle Scholar
29.van der Beek, C.J., Konczykowski, M., Abal’oshev, A., Abal’osheva, I., Gierlowski, P., Lewandowski, S.J., Indenbom, M.V., Barbanera, S.: Strong pinning in high-temperature superconducting films. Phys. Rev. B 66, 024523 (2002).CrossRefGoogle Scholar
30.Peurla, M., Huhtinen, H., Paturi, P.: Magnetic relaxation and flux pinning in YBCO films prepared by PLD from a nanocrystalline target. Supercond. Sci. Technol. 18, 628 (2005).CrossRefGoogle Scholar