Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T13:03:10.406Z Has data issue: false hasContentIssue false

Aerosol synthesis of gadolinium iron garnet particles

Published online by Cambridge University Press:  31 January 2011

H.K. Xu
Affiliation:
Departments of Physics and Chemistry, Kansas State University, Manhattan, Kansas 66506
C.M. Sorensen
Affiliation:
Departments of Physics and Chemistry, Kansas State University, Manhattan, Kansas 66506
K.J. Klabunde
Affiliation:
Departments of Physics and Chemistry, Kansas State University, Manhattan, Kansas 66506
G.C. Hadjipanayis
Affiliation:
Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716
Get access

Abstract

Particles of gadolinium iron garnet, Gd3Fe5O12, were produced primarily by an aerosol spray pyrolysis technique starting with solutions of gadolinium and iron nitrates. The as-prepared particles were polydisperse solid spheres. Average diameters in the range 0.05 to 0.8 μ could be obtained by variation of the initial solution concentration. Larger particles to 2 μ were created by direct, non-aerosol, pyrolysis of the solutions. Heat treatment caused sintering and particle coalescence and yielded ∼95% garnet phase. The reaction time to create the garnet phase scaled with the square of the particle diameter, the smallest particles transforming the quickest. Magnetic measurements showed bulk behavior for the saturation magnetization, but the coercivity could be varied with particle size with a maximum near the single domain size.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Messing, G.L., Gardner, T.J., and Ciminelli, R.R., Sci. of Ceram. 12, 117 (1983).Google Scholar
2.Sproson, D. W. and Messing, G. L., Ceram. Int. 12, 3 (1986).CrossRefGoogle Scholar
3.Tohge, N., Tatsumisago, M., Minami, T., Okuyama, K., Adachi, M., and Kousaka, Y., Jpn. J. Appl. Phys. 27, L1086 (1988).CrossRefGoogle Scholar
4.Ramamurthi, M. and Leong, K. H., J. Aerosol Sci. 18, 175 (1987).CrossRefGoogle Scholar
5.Gadalla, A.M. and Yu, H-F., J. Mater. Res. 5, 2923 (1990).CrossRefGoogle Scholar
6.Kodas, T. T., Adv. Mater., 180 (1989).CrossRefGoogle Scholar
7.Zhang, S. C., Messing, G. L., and Borden, M., J. Am. Ceram. Soc. 73, 61 (1990).CrossRefGoogle Scholar
8.Nonaka, K., Onishi, Y., Hayashi, S., Okada, K., Yano, T., Uematsu, K., Saito, K., and Otsuka, N., J. Ceram. Soc. Jpn. 98, 794 (1990).CrossRefGoogle Scholar
9.Nonaka, K., Hayashi, S., Okada, K., Otsuka, N., and Yano, T., J. Mater. Res. 6, 1750 (1991).CrossRefGoogle Scholar
10.Tang, Z. X., Nafis, S., Sorensen, C. M., Hadjipanayis, G. C., and Klabunde, K. J., J. Mag. Mag. Mater. 80, 285 (1989).CrossRefGoogle Scholar
11.Tang, Z.X., Sorensen, C. M., Hadjipanayis, G.C., and Klabunde, K.J., IEEE Trans. Mag. 25, 4237 (1989).Google Scholar
12.Geller, S., Remeika, J. P., Sherwood, R. C., Williams, H. J., and Espinosa, G. P., Phys. Rev. 137, 1034 (1965).CrossRefGoogle Scholar
13.Paoletti, A., Physics of Magnetic Garnets (North Holland, New York, 1978).Google Scholar
14.Levenson, L. M., Electron Ceramics (Marcel Dekker, New York, 1988), pp. 147187Google Scholar
15.Multani, M., Nanadikar, N. G., Venkataramani, N., Ragupathy, V.,. Pansare, A. K., and Gurjan, A., Mater. Res. Bull. XIV, 1251 (1979).CrossRefGoogle Scholar
16.Klug, H. P. and Alexander, L., X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1954), p. 140.Google Scholar
17.Cullity, B.D., Introduction to Magnetic Materials (Addison-Wesley, New York, 1972).Google Scholar