Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T23:51:40.845Z Has data issue: false hasContentIssue false

Adhesion and short-range forces between surfaces. Part II: Effects of surface lattice mismatch

Published online by Cambridge University Press:  31 January 2011

Patricia M. McGuiggan
Affiliation:
Materials Department, and Department of Chemical and Nuclear Engineering, University of California, Santa Barbara, California 93106
Jacob N. Israelachvili
Affiliation:
Materials Department, and Department of Chemical and Nuclear Engineering, University of California, Santa Barbara, California 93106
Get access

Abstract

The adhesion forces and interaction potentials between two mica surfaces as a function of the orientation (twist angle) of their surface lattices are reported. The forces were measured in air, in water, and in an aqueous KCl solution where oscillatory structural forces are present. In air, the adhesion is relatively independent of the twist angle θ in the range −10° < θ < +10° due to a 0.4 nm thick amorphous layer at the interface. In water, apart from a relatively angle-independent baseline adhesion, a sharp adhesion peak (energy minimum) occurs at θ = 0°, corresponding to maximum alignment of the surface lattices. As little as ±1° away from this peak the energy decreases by 50%. In aqueous KCl solution, due to potassium ion adsorption the water between the surfaces becomes ordered, resulting in an oscillatory structural force where the adhesive minima occur at discrete separations corresponding to an integral number of water layers. The adhesion energies corresponding to the first three potential minima were angle dependent near θ = 0° (again decreasing by 50% at ±1° away from θ = 0°). The repulsive maxima were also affected near θ = 0°. The results show that the whole interaction potential between two surfaces in liquids depends on the orientation of the surface lattices, and that these effects can extend at least four molecular layers. We discuss the consequences of these findings for material properties such as grain boundary energies, cracks, and friction.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Israelachvili, J. N., Intermolecular and Surface Forces (Academic Press, New York, 1985).Google Scholar
2Horn, R. G. and Israelachvili, J. N., J. Chem. Phys. 75, 1400 (1981).CrossRefGoogle Scholar
3Bailey, A. I. and Kay, S. M., Proc. R. Soc. A 301, 47 (1967).Google Scholar
4Adamson, A. W., Physical Chemistry of Surfaces (John Wiley & Sons, New York, 1982).Google Scholar
5Guy, A. G., Essentials of Materials Science (McGraw-Hill, Inc., New York, 1976), p. 81.Google Scholar
6Buckley, D. H. and Miyoshi, K., in Structural Ceramics, edited by Wachtman, J. B., Jr. (Academic Press, Inc., San Diego, CA, 1989), Vol. 29, p. 300.Google Scholar
7Ferrante, J. and Smith, J. R., Phys. Rev. 78, 1400 (1981).Google Scholar
8Buckley, D. H., J. Colloid Interface Sci. 58, 36 (1977).CrossRefGoogle Scholar
9Hirth, J. P. and Lothe, J., Theory of Dislocations (McGraw-Hill, Inc., New York, 1968).Google Scholar
10McGuiggan, P. M. and Israelachvili, J. N., Chem. Phys. Lett. 146, 469 (1988).CrossRefGoogle Scholar
11McGuiggan, P. M. and Israelachvili, J. N., in Characterization of the Structure and Chemistry of Defects in Materials, edited by Larson, B. C., Rühle, M., and Seidman, D. N. (Mater. Res. Soc. Symp. Proc. 138, Pittsburgh, PA, 1989), p. 349.Google Scholar
12Novaco, A. D. and McTague, J. P., Phys. Rev. Lett. 38, 22, 1286 (1977).CrossRefGoogle Scholar
13Prinz, G. A., Phys. Rev. Lett. 54, 10, 1051 (1985).CrossRefGoogle Scholar
14Vogel, V. and Wöll, C., J. Chem. Phys. 84, 5200 (1986).CrossRefGoogle Scholar
15van Megan, W. and Snook, I., J. Chem. Soc. Faraday Trans. 2, 75, 1095 (1979); R. Kjellander and S. Marcelja, Chem. Scripta 25, 73 (1985).CrossRefGoogle Scholar
16Henderson, D. L. and Lozada-Cassou, M., J. Colloid Interface Sci. 114, 180 (1986).CrossRefGoogle Scholar
17Mykura, H., Bansal, P. S., and Lewis, M. H., Phil. Mag. A42, 225 (1980).CrossRefGoogle Scholar
18Sutton, A. P. and Vitek, V., Philos. Trans. R. Soc. London A309, 1 (1983).Google Scholar
19Fischmeister, H. F., in Ceramic Microstructures ‘86 Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Mater. Sci. Res. 21, Plenum Press, New York, 1987).Google Scholar
20Thorel, A., Laval, J. Y., Broussaud, D., Teste de Sagey, G., and Schiffmacher, G., in Ceramic Microstructures '86 Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Mater. Sci. Res. 21, Plenum Press, New York, 1987).Google Scholar
21Johnson, K. L., Kendall, K., and Roberts, A. D., Proc. R. Soc. London A 324, 301 (1971); R. G. Horn, J. N. Israelachvili, and F. Pribac, J. Colloid Interface Sci. 115, 480 (1987).Google Scholar
22Israelachvili, J. N. and Adams, G. E., Faraday Trans. I 74, 975 (1978).CrossRefGoogle Scholar
23Pashley, R. M. and Israelachvili, J. N., J. Colloid Interface Sci. 101, 511 (1984).CrossRefGoogle Scholar
24Clarkson, M. (personal communication).Google Scholar
25Dhalenne, G., Dechamps, M., and Revcolevschi, A., J. Am. Ceram. Soc. 65, 267 (1979).Google Scholar
26Wan, K. T., Aimard, N., Lathabai, S., Horn, R. G., and Lawn, B. R., J. Mater. Res. 5, 172 (1990); K. T. Wan and B. R. Lawn (submitted).CrossRefGoogle Scholar
27Pashley, R. M., J. Colloid Interface Sci. 80, 153 (1981); ibid. 83, 531(1981).CrossRefGoogle Scholar
28Clarke, D. R., J. Phys. C 46, C451 (1985).Google Scholar
29Pashley, R. M., Chem. Scripta 25, 22 (1985).Google Scholar
30Lawn, B. R., Roach, D. H., and Thomson, R. M., J. Mater. Sci. 22, 4036 (1987).CrossRefGoogle Scholar
31Viani, B. E., Low, P. F., and Roth, C. B., J. Colloid Interface Sci. 6, 229 (1983).CrossRefGoogle Scholar
32Del Pennino, U., Mazzego, E., Valeri, S., Aliette, A., Brigatti, M. F., and Poppi, L., J. Colloid Interface Sci. 84, 301 (1981).CrossRefGoogle Scholar
33Ruhle, M., J. Phys. C 46, C4281 (1985).Google Scholar
34Israelachvili, J. N. and McGuiggan, P. M., J. Mater. Res. 5, 2223 (1990).CrossRefGoogle Scholar
35Poppa, H. and Elliot, A. G., Surf. Sci. 24, 149 (1971).CrossRefGoogle Scholar