Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T20:40:58.410Z Has data issue: false hasContentIssue false

Activation of PVDF membranes through facile hydroxylation of the polymeric dope

Published online by Cambridge University Press:  30 October 2017

Samer Al-Gharabli
Affiliation:
Department of Chemical Engineering, Masdar Institute, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; and Pharmaceutical and Chemical Engineering Department, German-Jordanian University, Amman 11180, Jordan
Musthafa O. Mavukkandy
Affiliation:
Department of Chemical Engineering, Masdar Institute, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
Joanna Kujawa
Affiliation:
Department of Chemical Engineering, Masdar Institute, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; and Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń 87-100, Poland
Suzana P. Nunes
Affiliation:
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Hassan A. Arafat*
Affiliation:
Department of Chemical Engineering, Masdar Institute, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A method comprising a two-step alkali/acid treatment of poly (vinylidene fluoride) (PVDF) polymer is developed for the fabrication of flat-sheet PVDF membranes functionalized with labile hydroxyl groups. This method involves the application of a short-duration modification in alkali medium (5% KOH). Extensive characterizations were performed on the prepared membranes. Modification of the polymer altered the crystallinity of the PVDF from a mixture of both α and β phases to a predominant β phase. Lower work of adhesion of the modified membrane indicated the formation of a more hydrophobic and wetting-resistant membrane surface. Centrifugation of the polymer dope after the modification had a pronounced impact on the properties of the resultant membranes. This protocol could be utilized in fine-tuning the properties of PVDF membranes for various target-specific applications such as membrane distillation. This method can also be used in functionalizing PVDF membranes further by exploiting the labile –OH group present on the membrane surface.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

Contributing Editor: Erik G. Herbert

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Liu, F., Hashim, N.A., Liu, Y., Abed, M.R.M., and Li, K.: Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375(1–2), 1 (2011).CrossRefGoogle Scholar
Gao, J., Yu, J., and Li, C.: Chemical modification of polyvinylidene fluoride (PVDF) membrane and its application to milk purification. Int. J. Nonlinear Sci. Numer. Simul. 11(1), 37 (2011).Google Scholar
Lalia, B.S., Guillen-Burrieza, E., Arafat, H.A., and Hashaikeh, R.: Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. J. Membr. Sci. 428(Suppl. C), 104 (2013).CrossRefGoogle Scholar
Sousa, R.E., Kundu, M., Gören, A., Silva, M.M., Liu, L., Costa, C.M., and Lanceros-Mendez, S.: Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion. RSC Adv. 5(110), 90428 (2015).CrossRefGoogle Scholar
Thomas, R., Guillen-Burrieza, E., and Arafat, H.A.: Pore structure control of PVDF membranes using a 2-stage coagulation bath phase inversion process for application in membrane distillation (MD). J. Membr. Sci. 452, 470 (2014).CrossRefGoogle Scholar
Mavukkandy, M.O., Bilad, M.R., Kujawa, J., Al-Gharabli, S., and Arafat, H.A.: On the effect of fumed silica particles on the structure, properties and application of PVDF membranes. Sep. Purif. Technol. 187, 365 (2017).CrossRefGoogle Scholar
Mavukkandy, M.O., Bilad, M.R., Giwa, A., Hasan, S.W., and Arafat, H.A.: Leaching of PVP from PVDF/PVP blend membranes: Impacts on membrane structure and fouling in membrane bioreactors. J. Mater. Sci. 51(9), 4328 (2016).CrossRefGoogle Scholar
Hu, M-X., Li, J-N., Zhang, S-L., Li, L., and Xu, Z-K.: Hydrophilic modification of PVDF microfiltration membranes by adsorption of facial amphiphile cholic acid. Colloids Surf., B 123, 809 (2014).CrossRefGoogle ScholarPubMed
Wang, J.K., Xiong, G.M., Luo, B., Choo, C.C., Yuan, S., Tan, N.S., and Choong, C.: Surface modification of PVDF using non-mammalian sources of collagen for enhancement of endothelial cell functionality. J. Mater. Sci.: Mater. Med. 27(3), 45 (2016).Google ScholarPubMed
Mika, A.: Chemical valves based on poly(4-vinylpyridine)-filled microporous membranes. J. Membr. Sci. 153(1), 45 (1999).CrossRefGoogle Scholar
Lin, Y-F., Wang, C-S., Ko, C-C., Chen, C-H., Chang, K-S., Tung, K-L., and Lee, K-R.: Polyvinylidene fluoride/siloxane nanofibrous membranes for long-term continuous CO2-capture with large absorption-flux enhancement. ChemSusChem 7(2), 604 (2014).CrossRefGoogle ScholarPubMed
Razmjou, A., Arifin, E., Dong, G., Mansouri, J., and Chen, V.: Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 415–416, 850 (2012).CrossRefGoogle Scholar
Dong, H., Xiao, K., Li, X., Wang, Z., and Guo, S.: Preparation of PVDF/Al2O3 hybrid membrane via alkaline modification and chemical coupling process. Desalin. Water Treat. 51(19–21), 3800 (2013).CrossRefGoogle Scholar
Ahmadi Feijani, E., Tavasoli, A., and Mahdavi, H.: Improving gas separation performance of poly(vinylidene fluoride) based mixed matrix membranes containing metal–organic frameworks by chemical modification. Ind. Eng. Chem. Res. 54(48), 12124 (2015).CrossRefGoogle Scholar
Nishigochi, S., Ishigami, T., Maruyama, T., Hao, Y., Ohmukai, Y., Iwasaki, Y., and Matsuyama, H.: Improvement of antifouling properties of polyvinylidene fluoride hollow fiber membranes by simple dip coating of phosphorylcholine copolymer via hydrophobic interactions. Ind. Eng. Chem. Res. 53(6), 2491 (2014).CrossRefGoogle Scholar
Mangindaan, D., Yared, I., Kurniawan, H., Sheu, J-R., and Wang, M-J.: Modulation of biocompatibility on poly(vinylidene fluoride) and polysulfone by oxygen plasma treatment and dopamine coating. J. Biomed. Mater. Res., Part A 100(11), 3177 (2012).CrossRefGoogle ScholarPubMed
Brewis, D.M., Mathieson, I., Sutherland, I., Cayless, R.A., and Dahm, R.H.: Pretreatment of poly(vinyl fluoride) and poly(vinylidene fluoride) with potassium hydroxide. Int. J. Adhes. Adhes. 16(2), 87 (1996).CrossRefGoogle Scholar
Efome, J.E., Baghbanzadeh, M., Rana, D., Matsuura, T., and Lan, C.Q.: Effects of superhydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation. Desalination 373, 47 (2015).CrossRefGoogle Scholar
Abdel-Hady, E.E., El-Toony, M.M., and Abdel-Hamed, M.O.: Grafting of glycidyl methacrylate/styrene onto polyvinyldine fluoride membranes for proton exchange fuel cell. Electrochim. Acta 103, 32 (2013).CrossRefGoogle Scholar
Li, L., Deng, B., Ji, Y., Yu, Y., Xie, L., Li, J., and Lu, X.: A novel approach to prepare proton exchange membranes from fluoropolymer powder by pre-irradiation induced graft polymerization. J. Membr. Sci. 346(1), 113 (2010).CrossRefGoogle Scholar
Liu, F., Zhu, B-K., and Xu, Y-Y.: Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers. Appl. Surf. Sci. 253(4), 2096 (2006).CrossRefGoogle Scholar
Arslantas, A., Sinirlioglu, D., Eren, F., Muftuoglu, A.E., and Bozkurt, A.: An investigation of proton conductivity of PVDF based 5-aminotetrazole functional polymer electrolyte membranes (PEMs) prepared via direct surface-initiated AGET ATRP of glycidyl methacrylate (GMA). J. Polym. Res. 21(5), 437 (2014).CrossRefGoogle Scholar
Meng, J-Q., Chen, C-L., Huang, L-P., Du, Q-Y., and Zhang, Y-F.: Surface modification of PVDF membrane via AGET ATRP directly from the membrane surface. Appl. Surf. Sci. 257(14), 6282 (2011).CrossRefGoogle Scholar
Sun, W., Liu, J., Chu, H., and Dong, B.: Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes 3(3), 226 (2013).CrossRefGoogle ScholarPubMed
Mathieson, I., Brewis, D.M., Sutherland, I., and Cayless, R.A.: Pretreatments of fluoropolymers. J. Adhes. 46(1–4), 49 (1994).CrossRefGoogle Scholar
Kise, H. and Ogata, H.: Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions. J. Polym. Sci., Polym. Chem. Ed. 21(12), 3443 (1983).CrossRefGoogle Scholar
Düputell, D. and Staude, E.: Heterogeneous modification of ultrafiltration membranes made from poly(vinylidene fluoride) and their characterization. J. Membr. Sci. 78(1), 45 (1993).CrossRefGoogle Scholar
Dias, A.J. and McCarthy, T.J.: Dehydrofluorination of poly(vinylidene fluoride) in dimethylformamide solution: Synthesis of an operationally soluble semiconducting polymer. J. Polym. Sci., Polym. Chem. Ed. 23(4), 1057 (1985).CrossRefGoogle Scholar
Dias, A.J. and McCarthy, T.J.: Synthesis of a two-dimensional array of organic functional groups: Surface-selective modification of poly(vinylidene fluoride). Macromolecules 17(12), 2529 (1984).CrossRefGoogle Scholar
Awanis Hashim, N., Liu, Y., and Li, K.: Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chem. Eng. Sci. 66(8), 1565 (2011).CrossRefGoogle Scholar
Rabuni, M.F., Nik Sulaiman, N.M., Aroua, M.K., and Hashim, N.A.: Effects of alkaline environments at mild conditions on the stability of PVDF membrane: An experimental study. Ind. Eng. Chem. Res. 52(45), 15874 (2013).CrossRefGoogle Scholar
Ross, G.J., Watts, J.F., Hill, M.P., and Morrissey, P.: Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer 41(5), 1685 (2000).CrossRefGoogle Scholar
Ross, G., Watts, J., Hill, M., and Morrissey, P.: Surface modification of poly(vinylidene fluoride) by alkaline treatment part 2. Process modification by the use of phase transfer catalysts. Polymer 42(2), 403 (2001).CrossRefGoogle Scholar
Nguyen-Tri, P., El Aidani, R., Leborgne, É., Pham, T., and Vu-Khanh, T.: Chemical ageingaging of a polyester nonwoven membrane used in aerosol and drainage filter. Polym. Degrad. Stab. 101, 71 (2014).CrossRefGoogle Scholar
Owens, D.K. and Wendt, R.C.: Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13(8), 1741 (1969).CrossRefGoogle Scholar
Fox, H. and Zisman, W.: The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J. Colloid Sci. 5(6), 514 (1950).CrossRefGoogle Scholar
Zisman, W.A.: Contact Angle Wettability Adhes (American Chemical Society, Washington, DC, 1964); pp. 151.Google Scholar
Soliveri, G., Pifferi, V., Annunziata, R., Rimoldi, L., Aina, V., Cerrato, G., Falciola, L., Cappelletti, G., and Meroni, D.: Alkylsilane–SiO2 hybrids. A concerted picture of temperature effects in vapor phase functionalization. J. Phys. Chem. C 119(27), 15390 (2015).CrossRefGoogle Scholar
Chibowski, E.: Surface free energy of a solid from contact angle hysteresis. Adv. Colloid Interface Sci. 103(2), 149 (2003).CrossRefGoogle ScholarPubMed
Chibowski, E., Jurak, M., Holysz, L., and Szczes, A.: Wetting properties of model biological membranes. Curr. Opin. Colloid Interface Sci. 19(4), 368 (2014).CrossRefGoogle Scholar
Zhu, H., Guo, Z., and Liu, W.: Adhesion behaviors on superhydrophobic surfaces. Chem. Commun. 50(30), 3900 (2014).CrossRefGoogle ScholarPubMed
Heydari, G., Thormann, E., Järn, M., Tyrode, E., and Claesson, P.M.: Hydrophobic surfaces: Topography effects on wetting by supercooled water and freezing delay. J. Phys. Chem. C 117(42), 21752 (2013).CrossRefGoogle Scholar
Kujawa, J., Cerneaux, S., Koter, S., and Kujawski, W.: Highly efficient hydrophobic titania ceramic membranes for water desalination. ACS Appl. Mater. Interfaces 6(16), 14223 (2014).CrossRefGoogle ScholarPubMed
Zheng, Z., Gu, Z., Huo, R., and Luo, Z.: Fabrication of self-cleaning poly(vinylidene fluoride) membrane with micro/nanoscaled two-tier roughness. J. Appl. Polym. Sci. 122(2), 1268 (2011).CrossRefGoogle Scholar
Kujawa, J., Cerneaux, S., Kujawski, W., Bryjak, M., and Kujawski, J.: How to functionalize ceramics by perfluoroalkylsilanes for membrane separation process? Properties and application of hydrophobized ceramic membranes. ACS Appl. Mater. Interfaces 8(11), 7564 (2016).CrossRefGoogle ScholarPubMed
Rana, D. and Matsuura, T.: Surface modifications for antifouling membranes. Chem. Rev. 110(4), 2448 (2010).CrossRefGoogle ScholarPubMed
Ozkazanc, E. and Guney, H.Y.: The variation of the dielectric constant and loss index with temperature and draw ratio in α-PVDF. J. Appl. Polym. Sci. 112(4), 2482 (2009).CrossRefGoogle Scholar
Liu, J., Lu, X., and Wu, C.: Effect of preparation methods on crystallization behavior and tensile strength of poly(vinylidene fluoride) membranes. Membranes 3(4), 389 (2013).CrossRefGoogle ScholarPubMed
Shilton, S.J., Prokhorov, K.A., Gordeyev, S.A., Nikolaeva, G.Y., Dunkin, I.R., Smith, W.E., and Pashinin, P.P.: Raman spectroscopic evaluation of molecular orientation in polysulfone. Laser Phys. Lett. 1(7), 336 (2004).CrossRefGoogle Scholar
Koenig, J.L.: Infrared and Raman Spectroscopy of Polymers (Smithers Rapra Publishing, Shrewsbury, United Kingdom, 2001).Google Scholar
Nasdala, L., Beran, A., Libowitzky, E., and Wolf, D.: The incorporation of hydroxyl groups and molecular water in natural zircon (ZrSiO4). Am. J. Sci. 301(10), 831 (2001).CrossRefGoogle Scholar
Xiu, Y., Zhu, L., Hess, D.W., and Wong, C.P.: Relationship between work of adhesion and contact angle hysteresis on superhydrophobic surfaces. J. Phys. Chem. C 112(30), 11403 (2008).CrossRefGoogle Scholar
Bertola, V.: Effect of polymer additives on the apparent dynamic contact angle of impacting drops. Colloids Surf., A 363(1–3), 135 (2010).CrossRefGoogle Scholar
Kujawa, J., Rozicka, A., Cerneaux, S., and Kujawski, W.: The influence of surface modification on the physicochemical properties of ceramic membranes. Colloids Surf., A 443, 567 (2014).CrossRefGoogle Scholar
Walsh, R.: Bond dissociation energy values in silicon-containing compounds and some of their implications. Acc. Chem. Res. 14(8), 246 (1981).CrossRefGoogle Scholar
Bhushan, B., Cichomski, M., Hoque, E., DeRose, J.A., Hoffmann, P., and Mathieu, H.J.: Nanotribological characterization of perfluoroalkylphosphonate self-assembled monolayers deposited on aluminum-coated silicon substrates. Microsyst. Technol. 12(6), 588 (2006).CrossRefGoogle Scholar
Kujawa, J. and Kujawski, W.: Functionalization of ceramic metal oxide powders and ceramic membranes by perfluoroalkylsilanes and alkylsilanes possessing different reactive groups: Physicochemical and tribological properties. ACS Appl. Mater. Interfaces 8(11), 7509 (2016).CrossRefGoogle ScholarPubMed
Sui, Y., Wang, Z., and Gao, C.: A new synthetical process of PVDF derivatives via atom transfer radical graft polymerizations and its application in fabrication of antifouling and antibacterial PVDF ultrafiltration membranes. Desalin. Water Treat. 52(34–36), 6377 (2014).CrossRefGoogle Scholar
Shen, Y. and Lua, A.C.: Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chem. Eng. J. 192, 201 (2012).CrossRefGoogle Scholar