Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T13:35:34.954Z Has data issue: false hasContentIssue false

Accumulation of structural defects in ion-irradiated Ca2Nd8(SiO4)6O2

Published online by Cambridge University Press:  31 January 2011

W.J. Weber
Affiliation:
Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352
R.K. Eby
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131
R.C. Ewing
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131
Get access

Abstract

Ion irradiations of the rare-earth orthosilicate, Ca2Nd8(SiO4)6O2, have been carried out using both alpha particles (emitted from a 238PuO2 source) and 3 MeV argon ions. The unit cell exhibits anisotropic expansion under irradiation, consistent with expectations based on the polyhedral connectivity within the structure. A least-squares analysis of the interatomic distances suggests that the unit-cell expansions are primarily due to changes in oxygen-oxygen distances and cation separations between neighboring polyhedra rather than to bonds within polyhedra. The irradiation-induced change in unit-cell volume is proportional to 1 – exp (BD), where B is an annealing rate constant and D is the dose, in agreement with a model for the accumulation of isolated point defects in the structure. The volume expansion saturates at 2.56% and 1.40% for the alpha and argon irradiations, respectively. Analysis of the results suggests that a significant fraction of the defects produced in the argon-ion displacement cascades are lost to in-cascade recombination. Differential scanning calorimetry of powder irradiated with 3 MeV argon ions to 20 ions/nm2 reveals an exothermic recovery peak at 350 °C with an activation energy of 1.3 ± 0.1 eV and average stored energy release of 28.2 J/g. There is no evidence for amorphization of this material under alpha or argon irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Weber, W. J., J. Am. Ceram. Soc. 65, 544 (1982).CrossRefGoogle Scholar
2.Weber, W. J., Radiat. Eff. 77, 295 (1983).CrossRefGoogle Scholar
3.Weber, W. J. and Matzke, Hj., Radiat. Eff. 98, 93 (1986).CrossRefGoogle Scholar
4.Weber, W. J. and Matzke, Hj., Mater. Ixtt. 5, 9 (1986).Google Scholar
5.Weber, W. J. and Greegor, R. B., Nucl. Instrum. Methods B46, 160 (1990).CrossRefGoogle Scholar
6.Fahey, J. A. and Weber, W. J., in The Rare Earths in Modern Science and Technology, edited by McCarthy, G. J., Silber, H. E., and Rhyne, J. J. (Plenum Press, New York, 1982), Vol. 3, pp. 341344.CrossRefGoogle Scholar
7.Fahey, J. A., Weber, W. J., and Rotella, F. J., J. Solid State Chem. 60, 145 (1985).CrossRefGoogle Scholar
8.McConnell, D., Apatite (Springer-Verlag, New York, 1973).CrossRefGoogle Scholar
9.Cartz, L., Karioris, F. G., and Fournelle, R. A., Radiat. Eff. 54, 57 (1981).CrossRefGoogle Scholar
10.Karioris, F. G., Gowda, K. A., Cartz, L., and Labbe, J. C., J. Nucl. Mater. 108 & 109, 748 (1982).CrossRefGoogle Scholar
11.Karioris, F. G., Ramasami, K., Gowda, K. A., and Cartz, L., Philos. Mag. A 52, 525 (1985).CrossRefGoogle Scholar
12.Vance, E. R., Cartz, L., and Karioris, F. G., J. Mater. Sci. 19, 2943 (1984).CrossRefGoogle Scholar
13.Weber, W. J., J. Nucl. Mater. 98, 206 (1981).CrossRefGoogle Scholar
14.Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
15.Kinchin, G. H. and Pease, R. S., Rep. Prog. Phys. 18, 1 (1955).CrossRefGoogle Scholar
16.Karioris, F. G., Gowda, K. A., and Cartz, L., Radiat. Eff. Lett. 58, 1 (1981).CrossRefGoogle Scholar
17.Meier, W. M. and Villiger, H., Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 129, 411 (1969).CrossRefGoogle Scholar
18.Baur, W. H., in Structure and Bonding in Crystals, edited by O'Keefe, M. and Navrotsky, A. (Academic Press, New York, 1981), Vol. II, pp. 3153.CrossRefGoogle Scholar
19.Pauling, L. C., The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Ithaca, NY, 1960), pp. 543562.Google Scholar
20.Weber, W. J., Radiat. Eff. 83, 145 (1984).CrossRefGoogle Scholar
21.Weber, W. J., Radiat. Eff. 70, 217 (1983).CrossRefGoogle Scholar
22.Nellis, W. J., Inorg. Nucl. Chem. Lett. 13, 393 (1977).CrossRefGoogle Scholar
23.Vook, F. L. and Stein, H. J., Radiat. Eff. 2, 23 (1969).CrossRefGoogle Scholar
24.Kuzovkov, V. and Kotomin, E., Phys. Status Solidi B 105, 789 (1981).CrossRefGoogle Scholar
25.Nakae, N., Harada, A., and Kirihara, T., J. Nucl. Mater. 71, 314 (1978).CrossRefGoogle Scholar
26.Weber, W. J., J. Mater. Res. 5, 2687 (1990).CrossRefGoogle Scholar
27.Greegor, R. B., Lytle, F. W., Ewing, R. C., and Haaker, R. F., Nucl. Instrum. Methods B1, 587 (1984).CrossRefGoogle Scholar
28.Greegor, R. B., Lytle, F. W., Livak, R. J., and Clinard, F. W., Jr., J. Nucl. Mater. 152, 270 (1988).CrossRefGoogle Scholar
29.Blewitt, T. H., Klank, A. C., Scott, T., and Weber, W. J., in Radiation- Induced Voids in Metals, edited by Corbett, J. W. and Ianniello, L. C. (CONF-710601, National Technical Information Services, Springfield, VA, 1972), pp. 757768.Google Scholar
30.Wiedersich, H., Radiat. Eff. 113, 97 (1990).CrossRefGoogle Scholar
31.Ehlert, T. C., Gowda, K. A., Karioris, F. G., and Cartz, L., Radiat. Eff. 70, 173 (1983).CrossRefGoogle Scholar