Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T18:31:37.127Z Has data issue: false hasContentIssue false

Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols

Published online by Cambridge University Press:  31 January 2011

Thomas F. Jaramillo*
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025
Todd G. Deutsch*
Affiliation:
Hydrogen Technologies and Systems Center, National Renewable Energy Laboratory,Golden, Colorado 80401
Alan Kleiman-Shwarsctein
Affiliation:
Department of Chemical Engineering, University of California–Santa Barbara,Santa Barbara, California 93106-5080
Arnold J. Forman
Affiliation:
Department of Chemistry and Biochemistry, University of California–Santa Barbara,Santa Barbara, California 93106-5080
Nicolas Gaillard*
Affiliation:
Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, Hawaii 96822
Roxanne Garland
Affiliation:
Hydrogen, Fuel Cells and Infrastructure Technologies, U.S. Department of Energy,Washington, District of Columbia 20585
Kazuhiro Takanabe
Affiliation:
Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Clemens Heske
Affiliation:
Department of Chemistry, University of Nevada–Las Vegas, Las Vegas, Nevada 89154-4003
Mahendra Sunkara
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292
Eric W. McFarland
Affiliation:
Department of Chemical Engineering, University of California–Santa Barbara,Santa Barbara, California 93106-5080
Kazunari Domen
Affiliation:
Department of Chemical System Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Eric L. Miller*
Affiliation:
Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, Hawaii 96822
Huyen N. Dinh*
Affiliation:
Hydrogen Technologies and Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401
*
a)Address all correspondence to this author. e-mail: [email protected]
b)Address all correspondence to this author. e-mail: [email protected]
c)Address all correspondence to this author. e-mail: [email protected]
e)These authors were editors of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy
d)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Photoelectrochemical (PEC) water splitting for hydrogen production is a promising technology that uses sunlight and water to produce renewable hydrogen with oxygen as a by-product. In the expanding field of PEC hydrogen production, the use of standardized screening methods and reporting has emerged as a necessity. This article is intended to provide guidance on key practices in characterization of PEC materials and proper reporting of efficiencies. Presented here are the definitions of various efficiency values that pertain to PEC, with an emphasis on the importance of solar-to-hydrogen efficiency, as well as a flow chart with standard procedures for PEC characterization techniques for planar photoelectrode materials (i.e., not suspensions of particles) with a focus on single band gap absorbers. These guidelines serve as a foundation and prelude to a much more complete and in-depth discussion of PEC techniques and procedures presented elsewhere.

Type
Reviews
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Holdren, J.P.Energy and sustainability. Science 315, 737 (2007)CrossRefGoogle ScholarPubMed
2.Lewis, N.S., Nocera, D.G.Powering the planet: Chemical challenges in solar energy utilization. Proc. Nat. Acad. Sci. U.S.A. 103, 15729 (2006)CrossRefGoogle ScholarPubMed
3.Fujishima, A., Honda, K.Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)CrossRefGoogle Scholar
4.Khaselev, O., Turner, J.A.A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998)CrossRefGoogle ScholarPubMed
5.Measurements of PEC hydrogen production materials, U.S. Department of Energy (2009) http://www2.eere.energy.gov/hydrogenandfuelcells/pec_standards_review.htmlGoogle Scholar
6.Khaselev, O., Bansal, A., Turner, J.A.High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26, 127 (2001)CrossRefGoogle Scholar
7.U.S. Quantum Efficiency Measurements Department of Energy (2005) http://www1.eere.energy.gov/solar/quantum_efficiency.htmlGoogle Scholar
8.Varghese, O.K., Grimes, C.A.Appropriate strategies for determining the photoconversion efficiency of water photo electrolysis cells: A review with examples using titania nanotube array photoanodes. Sol. Energy Mater. Sol. Cells 92, 374 (2008)CrossRefGoogle Scholar
9.Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27, 991 (2002)CrossRefGoogle Scholar
10.Mullejans, H., Ioannides, A., Kenny, R., Zaaiman, W., Ossenbrink, H.A., Dunlop, E.D.Spectral mismatch in calibration of photovoltaic reference devices by global sunlight method. Meas. Sci. Technol. 16, 1250 (2005)CrossRefGoogle Scholar
11.Smestad, G.P., Krebs, F.C., Lampert, C.M., Granqvist, C.G., Chopra, K.L., Mathew, X., Takakura, H.Reporting solar cell efficiencies in solar energy materials and solar cells. Sol. Energy Mater. Sol. Cells 92, 371 (2008)CrossRefGoogle Scholar
12.Nozik, A.J.Photoelectrolysis of water using semiconducting TiO2 crystals. Nature 257, 383 (1975)Google Scholar
13.Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., Glasscock, J.A.Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999 (2006)CrossRefGoogle Scholar
14.Standard, A.S.T.M.G173, 2003e1Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface (ASTM International, West Coshohocken, PA 2003)Google Scholar
15.Schoonen, M.A.A., Xu, Y., Strongin, D.R.An introduction to geocatalysis. J. Geochem. Explor. 62, 201 (1998)Google Scholar
16.Roos, A.Use of an integrating sphere in solar-energy research. Sol. Energy Mater. Sol. Cells 30, 77 (1993)CrossRefGoogle Scholar
17.Jahan, F., Islam, M.H., Smith, B.E.Band-gap and refractive-index determination of Mo-black coatings using several techniques. Sol. Energy Mater. Sol. Cells 37, 283 (1995)CrossRefGoogle Scholar
18.Anwar, M., Hogarth, C.A.Optical-properties of amorphous thin-films of MoO3 deposited by vacuum evaporation. Phys. Status Solidi A 109, 469 (1988)CrossRefGoogle Scholar
19.Santra, K., Sarkar, C.K., Mukherjee, M.K., Ghosh, B.Copper-oxide thin-films grown by plasma evaporation method. Thin Solid Films 213, 226 (1992)Google Scholar
20.Murphy, A.B.Optical properties of an optically rough coating from inversion of diffuse reflectance measurements. Appl. Opt. 46, 3133 (2007)Google Scholar
21.Kubelka, P.New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 38, 448 (1948)CrossRefGoogle Scholar
22.Kim, Y.I., Atherton, S.J., Brigham, E.S., Mallouk, T.E.Sensitized layer metal-oxide-semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron-donors. J. Phys. Chem. 97, 11802 (1993)CrossRefGoogle Scholar
23.Murphy, A.B.Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326 (2007)CrossRefGoogle Scholar
24.Finlayson, A.P., Tsaneva, V.N., Lyons, L., Clark, M., Glowacki, B.A.Evaluation of Bi-W-oxides for visible light photocatalysis. Phys. Status Solidi A 203, 327 (2006)CrossRefGoogle Scholar
25.Kislov, N., Srinivasan, S.S., Emirov, Y., Stefanakos, E.K.Optical absorption red and blue shifts in ZnFe2O4 nanoparticles. Mater. Sci. Eng., B 153, 70 (2008)Google Scholar
26.Brigham, E.S., Weisbecker, C.S., Rudzinski, W.E., Mallouk, T.E.Stabilization of intrazeolitic cadmium telluride nanoclusters by ion exchange. Chem. Mater. 8, 2121 (1996)CrossRefGoogle Scholar
27.Barton, D.G., Shtein, M., Wilson, R.D., Soled, S.L., Iglesia, E.Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630 (1999)CrossRefGoogle Scholar
28.Elliott, R.J.Intensity of optical absorption by excitons. Phys. Rev. 108, 1384 (1957)CrossRefGoogle Scholar
29.Tauc, J., Grigorov, R., Vancu, A.Optical properties and electronic structure of amorphous germanium. J. Phys. Soc. J. Peripher. Nerv. Syst. 21, 123 (1966)Google Scholar
30.Tauc, J., Menth, A., Wood, D.L.Optical and magnetic investigations of localized states in semiconducting glasses. Phys. Rev. Lett. 25, 749 (1970)CrossRefGoogle Scholar
31.Davis, E.A., Mott, N.F.Conduction in non-crystalline systems. V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903 (1970)CrossRefGoogle Scholar
32.Wood, D.L., Tauc, J.Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5, 3144 (1972)CrossRefGoogle Scholar
33.Mathew, X., Mathews, N.R., Sebastian, P.J.Temperature dependence of the optical transitions in electrodeposited Cu2O thin films. Sol. Energy Mater. Sol. Cells 70, 277 (2001)CrossRefGoogle Scholar
34.Balamurugan, B., Mehta, B.R., Avasthi, D.K., Singh, F., Arora, A.K., Rajalakshmi, M., Raghavan, G., Tyagi, A.K., Shivaprasad, S.M.Modifying the nanocrystalline characteristics—Structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J. Appl. Phys. 92, 3304 (2002)CrossRefGoogle Scholar
35.Pierson, J.F., Thobor-Keck, A., Billard, A.Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 210, 359 (2003)CrossRefGoogle Scholar
36.Shanid, N.A.M., Khadar, M.A.Evolution of nanostructure, phase transition and band gap tailoring in oxidized Cu thin films. Thin Solid Films 516, 6245 (2008)CrossRefGoogle Scholar
37.Kosugi, T., Kaneko, S.Novel spray-pyrolysis deposition of cuprous oxide thin films. J. Am. Ceram. Soc. 81, 3117 (1998)CrossRefGoogle Scholar
38.Rakhshani, A.E.Preparation, characteristics and photovoltaic properties of cuprous-oxide—A review. Solid-State Electron. 29, 7 (1986)CrossRefGoogle Scholar
39.Wieder, H., Czanderna, A.W.Optical properties of copper oxide films. J. Appl. Phys. 37, 184 (1966)Google Scholar
40.Drobny, V.F., Pulfrey, D.L.Properties of reactively-sputtered copper-oxide thin-films. Thin Solid Films 61, 89 (1979)CrossRefGoogle Scholar
41.Rakhshani, A.E., Varghese, J.Optical-absorption coefficient and thickness measurement of electrodeposited films of Cu2O. Phys. Status Solidi A 101, 479 (1987)Google Scholar
42.de Jongh, P.E., Vanmaekelbergh, D., Kelly, J.J.Cu2O: Electrodeposition and characterization. Chem. Mater. 11, 3512 (1999)CrossRefGoogle Scholar
43.Reddy, A.S., Rao, G.V., Uthanna, S., Reddy, P.S.Structural and optical studies on do reactive magnetron sputtered Cu2O films. Mater. Lett. 60, 1617 (2006)CrossRefGoogle Scholar
44.Mahalingam, T., Chitra, J.S.P., Chu, J.P., Moon, H., Kwon, H.J., Kim, Y.D.Photoelectrochemical solar cell studies on electroplated cuprous oxide thin films. J. Mater. Sci. - Mater. Electron. 17, 519 (2006)Google Scholar
45.Siripala, W., Perera, L., DeSilva, K.T.L., Jayanetti, J., Dharmadasa, I.M.Study of annealing effects of cuprous oxide grown by electrodeposition technique. Sol. Energy Mater. Sol. Cells 44, 251 (1996)Google Scholar
46.Gomes, W.P., Cardon, F.Electron-energy levels in semiconductor electrochemistry. Prog. Surf. Sci. 12, 155 (1982)CrossRefGoogle Scholar
47.Weinhardt, L., Blum, M., Bar, M., Heske, C., Cole, B., Marsen, B., Miller, E.L.Electronic surface level positions of WO3 thin films for photoelectrochemical hydrogen production. J. Phys. Chem. C 112, 3078 (2008)Google Scholar
48.Bar, M., Nishiwaki, S., Weinhardt, L., Pookpanratana, S., Fuchs, O., Blum, M., Yang, W., Denlinger, J.D., Shafarman, W.N., Heske, C.Depth-resolved band gap in Cu(In,Ga)(S,Se)(2) thin films. Appl. Phys. Lett. 93, 244103 (2008)CrossRefGoogle Scholar
49.Turner, J.A.Energetics of the semiconductor-electrolyte interface. J. Chem. Educ. 60, 327 (1983)Google Scholar
50.Deutsch, T.G.Sunlight, water, and III-V ntrides for fueling the future Ph.D. Thesis University of Colorado (2006)Google Scholar
51.Geisz, J.F., Friedman, D.J., Kurtz, S.GaNPAs solar cells lattice-matched to GaPConference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002 (2002)Google Scholar
52.Cardon, F., Gomes, W.P.Determination of flat-band potential of a semiconductor in contact with a metal or an electrolyte from Mott-Schottky plot. J. Phys. D: Appl. Phys. 11, L63 (1978)CrossRefGoogle Scholar
53.Nozik, A.J., Memming, R.Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100, 13061 (1996)Google Scholar
54.Chazalviel, J.N.Experimental techniques for the study of the semiconductor-electrolyte interface. Electrochim. Acta 33, 461 (1988)Google Scholar
55.Vanmeirhaeghe, R.L., Dutoit, E.C., Cardon, F., Gomes, W.P.Application of Kramers-Kronig relations to problems concerning frequency-dependence of electrode impedance. Electrochim. Acta 20, 995 (1975)CrossRefGoogle Scholar
56.Koval, C.A., Howard, J.N.Electron-transfer at semiconductor electrode liquid electrolyte interfaces. Chem. Rev. 92, 411 (1992)Google Scholar
57.Pleskov, Y.V., Mazin, V.M., Evstefeeva, Y.E., Varnin, V.P., Teremetskaya, I.G., Laptev, V.A.Photoelectrochemical determination of the flatband potential of boron-doped diamond. Electrochem. Solid-State Lett. 3, 141 (2000)Google Scholar
58.Marsen, B., Cole, B., Miller, E.L.Influence of sputter oxygen partial pressure on photoelectrochemical performance of tungsten oxide films. Sol. Energy Mater. Sol. Cells 91, 1954 (2007)CrossRefGoogle Scholar
59.Alexander, B.D., Kulesza, P.J., Rutkowska, L., Solarska, R., Augustynski, J.Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298 (2008)CrossRefGoogle Scholar
60.Marsen, B., Cole, B., Miller, E.L.Photoelectrolysis of water using thin copper gallium diselenide electrodes. Sol. Energy Mater. Sol. Cells 92, 1054 (2008)CrossRefGoogle Scholar
61.Wang, H.L., Deutsch, T.G., Turner, J.A.Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155, F91 (2008)CrossRefGoogle Scholar
62.Ginley, D.S., Butler, M.A.Photoelectrolysis of water using iron titanate anodes. J. Appl. Phys. 48, 2019 (1977)Google Scholar
63.Fujii, K., Karasawa, T., Oshkawa, K.Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation. Jpn. J. Appl. Phys. 44, L543 (2005)CrossRefGoogle Scholar
64.Hashiguchi, H., Maeda, K., Abe, R., Ishikawa, A., Kubota, J., Domen, K.Photoresponse of GaN:ZnO electrode on FTO under visible light irradiation. Bull. Chem. Soc. Jpn. 82, 401 (2009)CrossRefGoogle Scholar
65.Technical Plan Hydrogen Production, Multi-Year Research, Development and Demonstration Plan: Planned Program Activities for 2005-2015, U.S. Department of Energy (2007) http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/Google Scholar